Suppr超能文献

气动流体动力学影响愈伤组织芽再生过程中转基因叶绿体蛋白产量和生物学反应:对植物源生物制药生物工艺路线的启示。

Pneumatic hydrodynamics influence transplastomic protein yields and biological responses during shoot regeneration of callus: Implications for bioprocess routes to plant-made biopharmaceuticals.

作者信息

Barretto Sherwin S, Michoux Franck, Hellgardt Klaus, Nixon Peter J

机构信息

Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.

Alkion Biopharma SAS, Pépinière Entreprise Genopole, 4 rue Pierre Fontaine, 91058, Evry, France.

出版信息

Biochem Eng J. 2017 Jan 15;117(Pt B):73-81. doi: 10.1016/j.bej.2016.10.007.

Abstract

Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic shoots from callus tissue in RITA temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min was identified, corresponding to a shear rate of 96.7 s, pneumatic power input of 8.8 mW kg and initial 20-day pneumatic energy dissipation of 127 J kg, at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

摘要

转质体植物能够高产重组生物制药蛋白。植物组织培养结合了农业种植的优势与悬浮培养相关的生物过程一致性。此前已证明,通过在RITA临时浸没式生物反应器中从愈伤组织再生转质体芽来过量表达重组蛋白。在本研究中,我们研究了临时浸没培养(每8小时通气4分钟)期间液体培养基周期性气动悬浮的流体动力学,以及对破伤风毒素片段C(TetC)的生物学反应和转质体表达的影响。在一系列通气速率下培养生物量3天、20天和40天。将生长、线粒体活性(活力指标)和TetC蛋白产量与流体动力学参数、剪切速率和能量耗散率(每千克培养基)进行关联。确定了440毫升/分钟的临界通气速率,对应于96.7秒的剪切速率、8.8毫瓦/千克的气动功率输入和最初20天127焦/千克的气动能量耗散,此时观察到生物量积累和线粒体活性显著降低。在40天时,在所测试的整个条件范围内,随着通气速率的增加,TetC产量呈指数下降。这些观察结果对用于生物制药生产的转质体植物组织培养生物过程的优化和放大具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f83/5221668/1b4d0bfdb0e1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验