Khalil Jacques Y B, Langlois Thierry, Andreani Julien, Sorraing Jean-Marc, Raoult Didier, Camoin Laurence, La Scola Bernard
Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre national de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Facultés de Médecine et de PharmacieMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de MarseilleMarseille, France.
Becton Dickinson (Life Sciences-Biosciences) 94523 Rungis Cedex, France.
Front Cell Infect Microbiol. 2017 Jan 6;6:202. doi: 10.3389/fcimb.2016.00202. eCollection 2016.
Flow cytometry has contributed to virology but has faced many drawbacks concerning detection limits, due to the small size of viral particles. Nonetheless, giant viruses changed many concepts in the world of viruses, as a result of their size and hence opened up the possibility of using flow cytometry to study them. Recently, we developed a high throughput isolation of viruses using flow cytometry and protozoa co-culture. Consequently, isolating a viral mixture in the same sample became more common. Nevertheless, when one virus multiplies faster than others in the mixture, it is impossible to obtain a pure culture of the minority population. Here, we describe a robust sorting system, which can separate viable giant virus mixtures from supernatants. We tested three flow cytometry sorters by sorting artificial mixtures. Purity control was assessed by electron microscopy and molecular biology. As proof of concept, we applied the sorting system to a co-culture supernatant taken from a sample containing a viral mixture that we couldn't separate using end point dilution. In addition to isolating the quick-growing , we sorted and re-cultured a new, slow-growing virus, which we named "Cedratvirus." The sorting assay presented in this paper is a powerful and versatile tool for separating viral populations from amoeba co-cultures and adding value to the new field of flow virometry.
流式细胞术对病毒学有一定贡献,但由于病毒颗粒体积小,在检测限方面面临诸多缺点。尽管如此,巨型病毒因其大小改变了病毒界的许多概念,从而开启了利用流式细胞术研究它们的可能性。最近,我们开发了一种利用流式细胞术和原生动物共培养进行病毒高通量分离的方法。因此,在同一样本中分离病毒混合物变得更为常见。然而,当混合物中的一种病毒比其他病毒增殖得更快时,就不可能获得少数群体的纯培养物。在此,我们描述了一种强大的分选系统,它能够从上清液中分离出有活力的巨型病毒混合物。我们通过分选人工混合物对三种流式细胞术分选仪进行了测试。通过电子显微镜和分子生物学评估纯度控制。作为概念验证,我们将分选系统应用于取自含有病毒混合物样本的共培养上清液,该病毒混合物我们无法使用终点稀释法进行分离。除了分离生长迅速的病毒外,我们还分选并重新培养了一种新的生长缓慢的病毒,我们将其命名为“香橼病毒”。本文介绍的分选测定法是一种强大且通用的工具,可用于从变形虫共培养物中分离病毒群体,并为流式病毒学这一新领域增添价值。