IBM T.J. Watson Research Center, 1101 Kitchawan Road, PO Box 218, Yorktown Heights, New York 10598, USA.
School of Electrical, Computer and Energy Engineering, and Biodesign Center for Molecular Design &Biomimetics, Arizona State University, Tempe, Arizona 85287, USA.
Nat Commun. 2017 Jan 23;8:14243. doi: 10.1038/ncomms14243.
Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.
晶圆级制造具有集成电子设备的复杂纳流控系统对于实现无处不在、紧凑、可靠、高灵敏度和低成本的生物分子传感器至关重要。在这里,我们报告了一种可扩展的制造策略,能够在 200mm 晶圆级上制造具有复杂设计和低至个位数纳米尺寸的纳流控芯片。该策略与半导体工业标准互补金属氧化物半导体逻辑电路制造工艺兼容,通过在每个芯片上的数亿个纳米级通风孔中的气相氙二氟化物刻蚀来提取图案化的牺牲硅层。通过单分子荧光成像,我们证明这些牺牲纳流控芯片可以在由通道和支柱组成的二维纳流控网络中可控地完全拉伸 lambda DNA。灵活的纳流控结构设计、晶圆级制造、个位数纳米通道、可靠的流体密封和低热预算使我们的策略成为将功能平面纳流控系统与用于片上实验室应用的逻辑电路集成的一种潜在通用方法。