Yang Jianxin, Pan Tianle, Xie Zhenming, Yuan Wu, Ho Ho-Pui
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Nat Commun. 2024 Jun 15;15(1):5132. doi: 10.1038/s41467-024-48630-5.
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
动电效应一直是驱动分子通过纳米孔进行转运的主要选择。然而,这种方法的应用受到转运速度不可控的限制,导致电导信号不均匀,构象敏感性低,这阻碍了对分子的准确区分。在此,我们展示了利用光伏电化学蚀刻停止技术制造的管内微金字塔形硅纳米孔旋转诱导的惯性动力转运用于生物分子传感。通过在保持纳米孔中电泳和电渗效应平衡状态的同时调节漏斗形离心力场的动力学特性,我们实现了蛋白质的可控转运,并获得了具有长且可调停留时间以及高构象敏感性的稳定信号。此外,我们通过使用管内纳米孔装置无线测量电流阻断读数中的特征,展示了对分子构象的瞬时传感和区分以及对分子反应和构象变化的纵向监测。