Shanechi Maryam M
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1725-1734. doi: 10.1109/TNSRE.2016.2639501. Epub 2016 Dec 14.
Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.
运动脑机接口(BMI)使受试者能够通过调节自身神经活动来控制外部设备。BMI记录神经活动,使用数学算法估计受试者的意图动作,驱动外部设备,并向受试者提供所产生动作的视觉反馈。BMI系统的一个关键组件是控制算法,即解码器。近年来,BMI解码器的设计取得了重大进展,在非人类灵长类动物和人类中实现了熟练控制。在这篇综述文章中,我们讨论了BMI领域中开发的解码算法,特别关注受闭环控制思想启发的近期设计。运动BMI可以建模为一个闭环控制系统,其中控制器是大脑,被控对象是假肢,反馈是生物反馈,控制命令是神经活动。此外,与其他闭环系统相比,BMI具有各种独特的特性。神经活动是有噪声的且具有随机性,通常由一系列脉冲序列组成。运动的神经表征可能是非平稳的且会随时间变化,例如由于学习的结果。我们回顾了考虑到这些独特特性的近期解码器设计。我们还讨论了在控制理论、统计推断和神经科学的交叉领域存在的机会,以设计一个用于BMI设计的控制理论框架,并帮助开发下一代BMI控制算法。