Suppr超能文献

在行为过程中对尖峰和场电位信号的多尺度因果相互作用进行建模。

Modeling multiscale causal interactions between spiking and field potential signals during behavior.

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.

Center for Neural Sciences, New York University, New York, NY, United States of America.

出版信息

J Neural Eng. 2022 Mar 7;19(2). doi: 10.1088/1741-2552/ac4e1c.

Abstract

Brain recordings exhibit dynamics at multiple spatiotemporal scales, which are measured with spike trains and larger-scale field potential signals. To study neural processes, it is important to identify and model causal interactions not only at a single scale of activity, but also across multiple scales, i.e. between spike trains and field potential signals. Standard causality measures are not directly applicable here because spike trains are binary-valued but field potentials are continuous-valued. It is thus important to develop computational tools to recover multiscale neural causality during behavior, assess their performance on neural datasets, and study whether modeling multiscale causalities can improve the prediction of neural signals beyond what is possible with single-scale causality.We design a multiscale model-based Granger-like causality method based on directed information and evaluate its success both in realistic biophysical spike-field simulations and in motor cortical datasets from two non-human primates (NHP) performing a motor behavior. To compute multiscale causality, we learn point-process generalized linear models that predict the spike events at a given time based on the history of both spike trains and field potential signals. We also learn linear Gaussian models that predict the field potential signals at a given time based on their own history as well as either the history of binary spike events or that of latent firing rates.We find that our method reveals the true multiscale causality network structure in biophysical simulations despite the presence of model mismatch. Further, models with the identified multiscale causalities in the NHP neural datasets lead to better prediction of both spike trains and field potential signals compared to just modeling single-scale causalities. Finally, we find that latent firing rates are better predictors of field potential signals compared with the binary spike events in the NHP datasets.This multiscale causality method can reveal the directed functional interactions across spatiotemporal scales of brain activity to inform basic science investigations and neurotechnologies.

摘要

大脑记录表现出多个时空尺度的动力学,这些动力学可以通过尖峰列车和更大规模的场电位信号来测量。为了研究神经过程,重要的是不仅要在单个活动尺度上,而且要在多个尺度上识别和建模因果相互作用,即尖峰列车和场电位信号之间。标准的因果关系度量在这里不能直接应用,因为尖峰列车是二值的,而场电位是连续值的。因此,开发计算工具来恢复行为期间的多尺度神经因果关系,评估它们在神经数据集上的性能,并研究是否对多尺度因果关系进行建模可以提高对神经信号的预测,超过单尺度因果关系的可能性,这一点非常重要。

我们设计了一种基于有向信息的多尺度基于模型的格兰杰似然因果方法,并在现实的生物物理尖峰-场模拟和来自执行运动行为的两只非人类灵长类动物(NHP)的运动皮层数据集上评估其性能。为了计算多尺度因果关系,我们学习点过程广义线性模型,该模型基于尖峰列车和场电位信号的历史来预测给定时间的尖峰事件。我们还学习线性高斯模型,该模型基于自身历史以及二进制尖峰事件的历史或潜在点火率的历史来预测给定时间的场电位信号。

我们发现,尽管存在模型失配,我们的方法仍能揭示生物物理模拟中的真实多尺度因果关系网络结构。此外,在 NHP 神经数据集中,具有识别出的多尺度因果关系的模型导致对尖峰列车和场电位信号的预测均优于仅对单尺度因果关系进行建模的模型。最后,我们发现与 NHP 数据集的二进制尖峰事件相比,潜在点火率是场电位信号的更好预测因子。

这种多尺度因果关系方法可以揭示大脑活动的时空尺度上的定向功能相互作用,为基础科学研究和神经技术提供信息。

相似文献

2
Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks.估计神经尖峰-场网络中的多尺度直接因果关系图。
IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):857-866. doi: 10.1109/TNSRE.2019.2908156. Epub 2019 Mar 28.
3
Multiscale modeling and decoding algorithms for spike-field activity.尖峰-场活动的多尺度建模与解码算法。
J Neural Eng. 2019 Feb;16(1):016018. doi: 10.1088/1741-2552/aaeb1a. Epub 2018 Oct 24.
6
Spike-field Granger causality for hybrid neural data analysis.用于混合神经数据分析的尖峰-场格兰杰因果关系。
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
7
A Multiscale Dynamical Modeling and Identification Framework for Spike-Field Activity.多尺度尖峰-场活动动力学建模与识别框架
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1128-1138. doi: 10.1109/TNSRE.2019.2913218. Epub 2019 Apr 25.
10
Analyzing multiple spike trains with nonparametric Granger causality.用非参数格兰杰因果关系分析多个脉冲序列
J Comput Neurosci. 2009 Aug;27(1):55-64. doi: 10.1007/s10827-008-0126-2. Epub 2009 Jan 10.

引用本文的文献

1
Prioritized learning of cross-population neural dynamics.跨群体神经动力学的优先学习
J Neural Eng. 2025 Aug 11;22(4):046040. doi: 10.1088/1741-2552/ade569.

本文引用的文献

2
Quantifying causality in data science with quasi-experiments.用准实验量化数据科学中的因果关系。
Nat Comput Sci. 2021 Jan;1(1):24-32. doi: 10.1038/s43588-020-00005-8. Epub 2021 Jan 14.
3
Adaptive tracking of human ECoG network dynamics.自适应跟踪人类脑电网络动力学。
J Neural Eng. 2021 Feb 24;18(1):016011. doi: 10.1088/1741-2552/abae42.
5
Single-neuronal predictions of others' beliefs in humans.人类对他人信念的单神经元预测。
Nature. 2021 Mar;591(7851):610-614. doi: 10.1038/s41586-021-03184-0. Epub 2021 Jan 27.
10
Brain-machine interfaces from motor to mood.从运动到情绪的脑机接口。
Nat Neurosci. 2019 Oct;22(10):1554-1564. doi: 10.1038/s41593-019-0488-y. Epub 2019 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验