Wang Juan, Ding Huanjun, Bidgoli Fatemeh Azamian, Zhou Brian, Iribarren Carlos, Molloi Sabee, Baldi Pierre
IEEE Trans Med Imaging. 2017 May;36(5):1172-1181. doi: 10.1109/TMI.2017.2655486. Epub 2017 Jan 19.
Coronary artery disease is a major cause of death in women. Breast arterial calcifications (BACs), detected inmammograms, can be useful riskmarkers associated with the disease. We investigate the feasibility of automated and accurate detection ofBACsinmammograms for risk assessment of coronary artery disease. We develop a 12-layer convolutional neural network to discriminate BAC from non-BAC and apply a pixelwise, patch-based procedure for BAC detection. To assess the performance of the system, we conduct a reader study to provide ground-truth information using the consensus of human expert radiologists. We evaluate the performance using a set of 840 full-field digital mammograms from 210 cases, using both free-responsereceiveroperatingcharacteristic (FROC) analysis and calcium mass quantification analysis. The FROC analysis shows that the deep learning approach achieves a level of detection similar to the human experts. The calcium mass quantification analysis shows that the inferred calcium mass is close to the ground truth, with a linear regression between them yielding a coefficient of determination of 96.24%. Taken together, these results suggest that deep learning can be used effectively to develop an automated system for BAC detection inmammograms to help identify and assess patients with cardiovascular risks.
冠状动脉疾病是女性死亡的主要原因。在乳房X光片中检测到的乳腺动脉钙化(BACs)可能是与该疾病相关的有用风险标志物。我们研究了在乳房X光片中自动准确检测BACs以评估冠状动脉疾病风险的可行性。我们开发了一个12层卷积神经网络来区分BAC和非BAC,并应用基于像素块的方法进行BAC检测。为了评估该系统的性能,我们进行了一项阅片者研究,以利用人类专家放射科医生的共识提供真实信息。我们使用来自210例病例的840幅全视野数字乳房X光片进行评估,采用自由响应接收器操作特征(FROC)分析和钙质量定量分析。FROC分析表明,深度学习方法实现了与人类专家相似的检测水平。钙质量定量分析表明,推断出的钙质量接近真实值,它们之间的线性回归决定系数为96.24%。综上所述,这些结果表明深度学习可有效地用于开发一种在乳房X光片中检测BACs的自动化系统,以帮助识别和评估有心血管风险的患者。