文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Survey of Convolutional Neural Network in Breast Cancer.

作者信息

Zhu Ziquan, Wang Shui-Hua, Zhang Yu-Dong

机构信息

School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.

出版信息

Comput Model Eng Sci. 2023 Mar 9;136(3):2127-2172. doi: 10.32604/cmes.2023.025484.


DOI:10.32604/cmes.2023.025484
PMID:37152661
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7614504/
Abstract

PROBLEMS: For people all over the world, cancer is one of the most feared diseases. Cancer is one of the major obstacles to improving life expectancy in countries around the world and one of the biggest causes of death before the age of 70 in 112 countries. Among all kinds of cancers, breast cancer is the most common cancer for women. The data showed that female breast cancer had become one of the most common cancers. AIMS: A large number of clinical trials have proved that if breast cancer is diagnosed at an early stage, it could give patients more treatment options and improve the treatment effect and survival ability. Based on this situation, there are many diagnostic methods for breast cancer, such as computer-aided diagnosis (CAD). METHODS: We complete a comprehensive review of the diagnosis of breast cancer based on the convolutional neural network (CNN) after reviewing a sea of recent papers. Firstly, we introduce several different imaging modalities. The structure of CNN is given in the second part. After that, we introduce some public breast cancer data sets. Then, we divide the diagnosis of breast cancer into three different tasks: 1. classification; 2. detection; 3. segmentation. CONCLUSION: Although this diagnosis with CNN has achieved great success, there are still some limitations. (i) There are too few good data sets. A good public breast cancer dataset needs to involve many aspects, such as professional medical knowledge, privacy issues, financial issues, dataset size, and so on. (ii) When the data set is too large, the CNN-based model needs a sea of computation and time to complete the diagnosis. (iii) It is easy to cause overfitting when using small data sets.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/53f149965753/EMS174792-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/f523de0d1f27/EMS174792-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/752ffb2f3451/EMS174792-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/f34cc9dfd19d/EMS174792-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/9c2ad509f94c/EMS174792-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/c5a5d0de14a2/EMS174792-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/210f036e118c/EMS174792-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/ab847f327a73/EMS174792-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/54cdbeb643fa/EMS174792-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/efac89bcbcaf/EMS174792-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/668a5e803069/EMS174792-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/301d82d6584a/EMS174792-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/53f149965753/EMS174792-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/f523de0d1f27/EMS174792-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/752ffb2f3451/EMS174792-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/f34cc9dfd19d/EMS174792-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/9c2ad509f94c/EMS174792-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/c5a5d0de14a2/EMS174792-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/210f036e118c/EMS174792-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/ab847f327a73/EMS174792-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/54cdbeb643fa/EMS174792-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/efac89bcbcaf/EMS174792-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/668a5e803069/EMS174792-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/301d82d6584a/EMS174792-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a8/7614504/53f149965753/EMS174792-f012.jpg

相似文献

[1]
A Survey of Convolutional Neural Network in Breast Cancer.

Comput Model Eng Sci. 2023-3-9

[2]
Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).

J Med Syst. 2019-12-14

[3]
Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem.

Simulation. 2021-8

[4]
Deep Learning-based Automatic Diagnosis of Breast Cancer on MRI Using Mask R-CNN for Detection Followed by ResNet50 for Classification.

Acad Radiol. 2023-9

[5]
Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[6]
Serum analysis based on SERS combined with 2D convolutional neural network and Gramian angular field for breast cancer screening.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-5-5

[7]
A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.

Int J Med Inform. 2018-6-18

[8]
Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

Med Phys. 2017-3

[9]
Convolutional neural networks for breast cancer detection in mammography: A survey.

Comput Biol Med. 2021-4

[10]
Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.

Ultrasound Med Biol. 2020-5

引用本文的文献

[1]
Enhancing breast cancer diagnosis: transfer learning on DenseNet with neural hashing for histopathology fine-grained image classification.

Med Biol Eng Comput. 2025-4-6

[2]
Improved Breast Cancer Classification through Combining Transfer Learning and Attention Mechanism.

Life (Basel). 2023-9-21

本文引用的文献

[1]
Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning.

Comput Math Methods Med. 2022

[2]
Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model.

Comput Intell Neurosci. 2022

[3]
BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images.

Bioengineering (Basel). 2022-6-20

[4]
YOLOv4-Based CNN Model versus Nested Contours Algorithm in the Suspicious Lesion Detection on the Mammography Image: A Direct Comparison in the Real Clinical Settings.

J Imaging. 2022-3-24

[5]
CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images.

Comput Biol Med. 2022-3

[6]
BCNet: A Novel Network for Blood Cell Classification.

Front Cell Dev Biol. 2022-1-3

[7]
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN).

PLoS One. 2021

[8]
Dilated Semantic Segmentation for Breast Ultrasonic Lesion Detection Using Parallel Feature Fusion.

Diagnostics (Basel). 2021-7-5

[9]
The ever-increasing importance of cancer as a leading cause of premature death worldwide.

Cancer. 2021-8-15

[10]
Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron.

Opt Lett. 2021-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索