IEEE Trans Cybern. 2017 Apr;47(4):934-945. doi: 10.1109/TCYB.2016.2533430. Epub 2016 Mar 8.
Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.
高光谱图像(HSI)的像素分类是一项重要任务,已广泛应用于许多实际应用中。其主要挑战是高维小样本问题。为了解决这个问题,已经开发了许多子空间学习(SL)方法来降低像素的维度,同时保留重要的判别信息。受 SL 中脊线线性回归(RLR)框架的启发,我们提出了一种用于提取特征表示的谱-空共享线性回归方法(SSSLR)。与 RLR 相比,我们提出的 SSSLR 具有以下两个优点。首先,我们利用凸集来探索空间结构,以计算线性投影矩阵。其次,我们利用由原始数据空间和隐藏特征空间形成的共享结构学习模型,为分类学习更具判别力的线性投影矩阵。为了优化我们提出的方法,提出了一种有效的迭代算法。在两个流行的 HSI 数据集,即印度松树和萨利纳斯上的实验结果表明,我们提出的方法优于许多 SL 方法。