Suppr超能文献

基于统一神经模型的频谱多样化神经进化。

Spectrum-Diverse Neuroevolution With Unified Neural Models.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1759-1773. doi: 10.1109/TNNLS.2016.2551748. Epub 2016 Apr 27.

Abstract

Learning algorithms are being increasingly adopted in various applications. However, further expansion will require methods that work more automatically. To enable this level of automation, a more powerful solution representation is needed. However, by increasing the representation complexity, a second problem arises. The search space becomes huge, and therefore, an associated scalable and efficient searching algorithm is also required. To solve both the problems, first a powerful representation is proposed that unifies most of the neural networks features from the literature into one representation. Second, a new diversity preserving method called spectrum diversity is created based on the new concept of chromosome spectrum that creates a spectrum out of the characteristics and frequency of alleles in a chromosome. The combination of spectrum diversity with a unified neuron representation enables the algorithm to either surpass or equal NeuroEvolution of Augmenting Topologies on all of the five classes of problems tested. Ablation tests justify the good results, showing the importance of added new features in the unified neuron representation. Part of the success is attributed to the novelty-focused evolution and good scalability with a chromosome size provided by spectrum diversity. Thus, this paper sheds light on a new representation and diversity preserving mechanism that should impact algorithms and applications to come.

摘要

学习算法在各种应用中越来越被采用。然而,进一步的扩展需要更自动的方法。为了实现这种自动化水平,需要更强大的解决方案表示。然而,通过增加表示的复杂性,会出现第二个问题。搜索空间变得非常大,因此,还需要一个相关的可扩展和高效的搜索算法。为了解决这两个问题,首先提出了一种强大的表示方法,它将文献中大多数神经网络的特征统一到一个表示中。其次,根据染色体谱的新概念,创建了一种新的保持多样性的方法,称为谱多样性,它从染色体中的特征和等位基因的频率中创建一个谱。谱多样性与统一神经元表示的结合使算法能够在所有测试的五类问题上超越或等同于神经进化增强拓扑。消融测试证明了良好的结果,显示了在统一神经元表示中添加新特征的重要性。部分成功归因于以新颖性为重点的进化以及由谱多样性提供的良好的可扩展性和染色体大小。因此,本文提出了一种新的表示方法和多样性保护机制,这应该会对未来的算法和应用产生影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验