Faculty of Mechanical Engineering, Kyoto Institute of Technology, Kyoto, Japan.
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan.
PLoS One. 2024 Jul 15;19(7):e0307084. doi: 10.1371/journal.pone.0307084. eCollection 2024.
Neuroevolution is a promising approach for designing artificial neural networks using an evolutionary algorithm. Unlike recent trending methods that rely on gradient-based algorithms, neuroevolution can simultaneously evolve the topology and weights of neural networks. In neuroevolution with topological evolution, handling crossover is challenging because of the competing conventions problem. Mutation-based evolving artificial neural network is an alternative topology and weights neuroevolution approach that omits crossover and uses only mutations for genetic variation. This study enhances the performance of mutation-based evolving artificial neural network in two ways. First, the mutation step size controlling the magnitude of the parameter perturbation is automatically adjusted by a self-adaptive mutation mechanism, enabling a balance between exploration and exploitation during the evolution process. Second, the structural mutation probabilities are automatically adjusted depending on the network size, preventing excessive expansion of the topology. The proposed methods are compared with conventional neuroevolution algorithms using locomotion tasks provided in the OpenAI Gym benchmarks. The results demonstrate that the proposed methods with the self-adaptive mutation mechanism can achieve better performance. In addition, the adjustment of structural mutation probabilities can mitigate topological bloat while maintaining performance.
神经进化是一种使用进化算法设计人工神经网络的有前途的方法。与最近依赖基于梯度的算法的流行方法不同,神经进化可以同时进化神经网络的拓扑结构和权重。在具有拓扑进化的神经进化中,由于竞争惯例问题,处理交叉操作具有挑战性。基于突变的进化人工神经网络是一种替代的拓扑和权重神经进化方法,它省略了交叉操作,仅使用突变来进行遗传变异。本研究通过两种方式增强了基于突变的进化人工神经网络的性能。首先,通过自适应突变机制自动调整控制参数扰动幅度的突变步长,在进化过程中实现探索和利用之间的平衡。其次,根据网络大小自动调整结构突变概率,防止拓扑结构过度扩展。使用 OpenAI Gym 基准提供的运动任务将所提出的方法与传统的神经进化算法进行了比较。结果表明,具有自适应突变机制的所提出的方法可以实现更好的性能。此外,调整结构突变概率可以在保持性能的同时减轻拓扑膨胀。