Suppr超能文献

通过神经进化进行鲁棒优化。

Robust optimization through neuroevolution.

机构信息

Institute of Cognitive Sciences and Technologies-National Research Council (CNR), Via S. Martino della Battaglia, Roma, Italia.

出版信息

PLoS One. 2019 Mar 1;14(3):e0213193. doi: 10.1371/journal.pone.0213193. eCollection 2019.

Abstract

We propose a method for evolving neural network controllers robust with respect to variations of the environmental conditions (i.e. that can operate effectively in new conditions immediately, without the need to adapt to variations). The method specifies how the fitness of candidate solutions can be evaluated, how the environmental conditions should vary during the course of the evolutionary process, which algorithm can be used, and how the best solution can be identified. The obtained results show how the method proposed is effective and computational tractable. It allows to improve performance on an extended version of the double-pole balancing problem, outperform the best available human-designed controllers on a car racing problem, and generate effective solutions for a swarm robotic problem. The comparison of different algorithms indicates that the CMA-ES and xNES methods, that operate by optimizing a distribution of parameters, represent the best options for the evolution of robust neural network controllers.

摘要

我们提出了一种针对环境条件变化的神经网络控制器的演化方法(即能够在新条件下立即有效地运行,而无需适应变化)。该方法指定了如何评估候选解决方案的适应性,如何在进化过程中改变环境条件,使用哪种算法以及如何识别最佳解决方案。所获得的结果表明,所提出的方法是有效和计算可行的。它可以提高双极平衡问题扩展版本的性能,在赛车问题上优于最佳的可用人为设计的控制器,并为群体机器人问题生成有效的解决方案。不同算法的比较表明,通过优化参数分布来操作的 CMA-ES 和 xNES 方法是演化鲁棒神经网络控制器的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1f/6396973/db55d097e300/pone.0213193.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验