Suppr超能文献

基于时空丰富模型的运动矢量平面横截面视频隐写分析

Spatio-Temporal Rich Model-Based Video Steganalysis on Cross Sections of Motion Vector Planes.

作者信息

Tasdemir Kasim, Kurugollu Fatih, Sezer Sakir

出版信息

IEEE Trans Image Process. 2016 Jul;25(7):3316-3328. doi: 10.1109/TIP.2016.2567073. Epub 2016 May 11.

Abstract

A rich model-based motion vector (MV) steganalysis benefiting from both temporal and spatial correlations of MVs is proposed in this paper. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this paper. First, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring MVs for longer distances. Therefore, temporal MV dependency alongside the spatial dependency is utilized for rigorous MV steganalysis. Second, unlike the filters previously used, which were heuristically designed against a specific MV steganography, a diverse set of many filters, which can capture aberrations introduced by various MV steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in the previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent MV steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in MV steganalysis field, including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.

摘要

本文提出了一种基于丰富模型的运动矢量(MV)隐写分析方法,该方法受益于运动矢量的时间和空间相关性。所提出的隐写分析方法具有比先前方法(甚至是针对特定目标的方法)明显更高的检测准确率。检测准确率的提高得益于本文引入的几种新颖方法。首先,研究表明,相邻运动矢量在较长距离上不仅在空间上而且在时间上都存在很强的相关性。因此,时间运动矢量依赖性与空间依赖性一起被用于严格的运动矢量隐写分析。其次,与之前针对特定运动矢量隐写术启发式设计的滤波器不同,本文使用了一组多样的滤波器,这些滤波器可以捕获各种运动矢量隐写术方法引入的偏差。滤波器内核的种类和数量都大大超过了之前使用的。此外,本文采用了高达五阶的滤波器,而之前的方法最多使用二阶滤波器。由于这些原因,所提出的系统在广泛的时空范围内捕获各种去相关性,并提供了更好的掩护模型。所提出的方法针对最著名的运动矢量隐写分析和隐写术方法进行了测试。据作者所知,实验部分在运动矢量隐写分析领域进行了最全面的测试,包括五种隐写方法和七种隐写分析方法。测试结果表明,所提出的方法在低有效载荷下检测准确率提高约20%,在高有效载荷下提高5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验