Dept. Signal et Image, Inst. Nat. des Telecommun., Evry.
IEEE Trans Image Process. 1997;6(3):425-40. doi: 10.1109/83.557353.
This paper addresses the estimation of fuzzy Gaussian distribution mixture with applications to unsupervised statistical fuzzy image segmentation. In a general way, the fuzzy approach enriches the current statistical models by adding a fuzzy class, which has several interpretations in signal processing. One such interpretation in image segmentation is the simultaneous appearance of several thematic classes on the same site. We introduce a new procedure for estimating of fuzzy mixtures, which is an adaptation of the iterative conditional estimation (ICE) algorithm to the fuzzy framework, We first describe the blind estimation, i.e., without taking into account any spatial information, valid in any context of independent noisy observations. Then we introduce, in a manner analogous to classical hard segmentation, the spatial information by two different approaches: contextual segmentation and adaptive blind segmentation. In the first case, the spatial information is taken into account at the segmentation step level, and in the second case it is taken into account at the parameter estimation step level. The results obtained with the iterative conditional estimation algorithm are compared to those obtained with expectation-maximization (EM) and the stochastic EM algorithms, on both parameter estimation and unsupervised segmentation levels, via simulations. The methods proposed appear as complementary to the fuzzy C-means algorithms.
本文针对模糊高斯分布混合模型的估计问题进行了研究,其应用涉及无监督统计模糊图像分割。一般来说,模糊方法通过添加模糊类来丰富当前的统计模型,模糊类在信号处理中有多种解释。在图像分割中,一种解释是同一位置同时出现几个主题类。我们引入了一种新的模糊混合估计方法,它是对迭代条件估计(ICE)算法在模糊框架中的一种适应性改进。我们首先描述了盲估计,即在不考虑任何空间信息的情况下,在任何独立噪声观测的情况下都有效。然后,我们通过两种不同的方法引入了空间信息:上下文分割和自适应盲分割。在第一种情况下,空间信息是在分割步骤级别上考虑的,而在第二种情况下,空间信息是在参数估计步骤级别上考虑的。通过模拟,将迭代条件估计算法得到的结果与期望最大化(EM)和随机 EM 算法在参数估计和无监督分割两个方面的结果进行了比较。所提出的方法与模糊 C-均值算法互补。