Suppr超能文献

通过 123I-碘代异丙托品 SPECT 成像中的形态分析和表面拟合实现帕金森病的高精度分类。

High-Accuracy Classification of Parkinson's Disease Through Shape Analysis and Surface Fitting in 123I-Ioflupane SPECT Imaging.

出版信息

IEEE J Biomed Health Inform. 2017 May;21(3):794-802. doi: 10.1109/JBHI.2016.2547901. Epub 2016 Mar 29.

Abstract

Early and accurate identification of Parkinsonian syndromes (PS) involving presynaptic degeneration from nondegenerative variants such as scans without evidence of dopaminergic deficit (SWEDD) and tremor disorders is important for effective patient management as the course, therapy, and prognosis differ substantially between the two groups. In this study, we use single photon emission computed tomography (SPECT) images from healthy normal, early PD, and SWEDD subjects, as obtained from the Parkinson's Progression Markers Initiative (PPMI) database, and process them to compute shape- and surface-fitting-based features. We use these features to develop and compare various classification models that can discriminate between scans showing dopaminergic deficit, as in PD, from scans without the deficit, as in healthy normal or SWEDD. Along with it, we also compare these features with striatal binding ratio (SBR)-based features, which are well established and clinically used, by computing a feature-importance score using random forests technique. We observe that the support vector machine (SVM) classifier gives the best performance with an accuracy of 97.29%. These features also show higher importance than the SBR-based features. We infer from the study that shape analysis and surface fitting are useful and promising methods for extracting discriminatory features that can be used to develop diagnostic models that might have the potential to help clinicians in the diagnostic process.

摘要

早期准确识别涉及突触前退化的帕金森综合征(PS),如无多巴胺能缺陷扫描(SWEDD)和震颤障碍等非变性变异,对于有效管理患者非常重要,因为两组患者的病程、治疗和预后有很大的不同。在这项研究中,我们使用了来自帕金森进展标志物倡议(PPMI)数据库的健康正常、早期 PD 和 SWEDD 受试者的单光子发射计算机断层扫描(SPECT)图像,并对其进行处理以计算基于形状和表面拟合的特征。我们使用这些特征来开发和比较各种分类模型,这些模型可以区分显示多巴胺能缺陷的扫描(如 PD)和没有缺陷的扫描(如健康正常或 SWEDD)。同时,我们还通过使用随机森林技术计算特征重要性评分,将这些特征与基于纹状体结合比(SBR)的特征进行比较,这些特征是成熟且临床上常用的。我们观察到支持向量机(SVM)分类器的性能最佳,准确率为 97.29%。这些特征也比基于 SBR 的特征更重要。我们从研究中推断,形状分析和表面拟合是提取可用于开发诊断模型的有区别特征的有用且有前途的方法,这些模型可能有潜力帮助临床医生进行诊断过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验