Suppr超能文献

在1-碘代氟潘单光子发射计算机断层显像中纳入深度特征的放射组学用于预测帕金森病

Radiomics incorporating deep features for predicting Parkinson's disease in I-Ioflupane SPECT.

作者信息

Jiang Han, Du Yu, Lu Zhonglin, Wang Bingjie, Zhao Yonghua, Wang Ruibing, Zhang Hong, Mok Greta S P

机构信息

Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China.

PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China.

出版信息

EJNMMI Phys. 2024 Jul 10;11(1):60. doi: 10.1186/s40658-024-00651-1.

Abstract

PURPOSE

I-Ioflupane SPECT is an effective tool for the diagnosis and progression assessment of Parkinson's disease (PD). Radiomics and deep learning (DL) can be used to track and analyze the underlying image texture and features to predict the Hoehn-Yahr stages (HYS) of PD. In this study, we aim to predict HYS at year 0 and year 4 after the first diagnosis with combined imaging, radiomics and DL-based features using I-Ioflupane SPECT images at year 0.

METHODS

In this study, 161 subjects from the Parkinson's Progressive Marker Initiative database underwent baseline 3T MRI and I-Ioflupane SPECT, with HYS assessment at years 0 and 4 after first diagnosis. Conventional imaging features (IF) and radiomic features (RaF) for striatum uptakes were extracted from SPECT images using MRI- and SPECT-based (SPECT-V and SPECT-T) segmentations respectively. A 2D DenseNet was used to predict HYS of PD, and simultaneously generate deep features (DF). The random forest algorithm was applied to develop models based on DF, RaF, IF and combined features to predict HYS (stage 0, 1 and 2) at year 0 and (stage 0, 1 and ≥ 2) at year 4, respectively. Model predictive accuracy and receiver operating characteristic (ROC) analysis were assessed for various prediction models.

RESULTS

For the diagnostic accuracy at year 0, DL (0.696) outperformed most models, except DF + IF in SPECT-V (0.704), significantly superior based on paired t-test. For year 4, accuracy of DF + RaF model in MRI-based method is the highest (0.835), significantly better than DF + IF, IF + RaF, RaF and IF models. And DL (0.820) surpassed models in both SPECT-based methods. The area under the ROC curve (AUC) highlighted DF + RaF model (0.854) in MRI-based method at year 0 and DF + RaF model (0.869) in SPECT-T method at year 4, outperforming DL models, respectively. And then, there was no significant differences between SPECT-based and MRI-based segmentation methods except for the imaging feature models.

CONCLUSION

The combination of radiomic and deep features enhances the prediction accuracy of PD HYS compared to only radiomics or DL. This suggests the potential for further advancements in predictive model performance for PD HYS at year 0 and year 4 after first diagnosis using I-Ioflupane SPECT images at year 0, thereby facilitating early diagnosis and treatment for PD patients. No significant difference was observed in radiomics results obtained between MRI- and SPECT-based striatum segmentations for radiomic and deep features.

摘要

目的

碘[¹²³I]氟潘单光子发射计算机断层扫描(SPECT)是诊断和评估帕金森病(PD)病情进展的有效工具。放射组学和深度学习(DL)可用于追踪和分析潜在的图像纹理及特征,以预测PD的 Hoehn-Yahr 分期(HYS)。在本研究中,我们旨在使用 0 年时的碘[¹²³I]氟潘 SPECT 图像,通过联合成像、放射组学和基于 DL 的特征,预测首次诊断后 0 年和 4 年时的 HYS。

方法

在本研究中,来自帕金森病进展标志物倡议数据库的 161 名受试者接受了基线 3T 磁共振成像(MRI)和碘[¹²³I]氟潘 SPECT 检查,并在首次诊断后的 0 年和 4 年进行 HYS 评估。分别使用基于 MRI 和 SPECT(SPECT-V 和 SPECT-T)的分割方法,从 SPECT 图像中提取纹状体摄取的传统成像特征(IF)和放射组学特征(RaF)。使用二维密集连接网络(DenseNet)预测 PD 的 HYS,并同时生成深度特征(DF)。应用随机森林算法,基于 DF、RaF、IF 和组合特征分别建立模型,以预测 0 年时的 HYS(0 期、1 期和 2 期)以及 4 年时的 HYS(0 期、1 期和≥2 期)。对各种预测模型进行模型预测准确性和受试者工作特征(ROC)分析。

结果

对于 0 年时的诊断准确性,DL(0.696)表现优于大多数模型,但 SPECT-V 中的 DF + IF(0.704)除外,基于配对 t 检验,DL 显著更优。对于 4 年时,基于 MRI 方法的 DF + RaF 模型准确性最高(0.835),显著优于 DF + IF、IF + RaF、RaF 和 IF 模型。并且 DL(0.820)在两种基于 SPECT 的方法中均超过了其他模型。ROC 曲线下面积(AUC)突出显示了基于 MRI 方法在 0 年时的 DF + RaF 模型(0.854)以及基于 SPECT-T 方法在 4 年时的 DF + RaF 模型(0.869),分别优于 DL 模型。然后,除了成像特征模型外,基于 SPECT 和基于 MRI 的分割方法之间没有显著差异。

结论

与仅使用放射组学或 DL 相比,放射组学和深度特征的组合提高了 PD HYS 的预测准确性。这表明在使用 0 年时的碘[¹²³I]氟潘 SPECT 图像首次诊断后 0 年和 4 年时,PD HYS 预测模型性能有进一步提升的潜力,从而有助于 PD 患者的早期诊断和治疗。在基于 MRI 和基于 SPECT 的纹状体分割所获得的放射组学和深度特征方面,未观察到显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ebc/11236833/1b3413bc9dba/40658_2024_651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验