Suppr超能文献

基于异质网络的方法,通过整合多维数据来识别 GBM 相关基因。

A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):713-720. doi: 10.1109/TCBB.2016.2555314. Epub 2016 Apr 20.

Abstract

The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

摘要

多维数据的出现为更全面地分析人类疾病的分子特征提供了机会,从而改善诊断、治疗和预防。在这项研究中,我们提出了一种基于异质网络的方法(HNMD)来识别 GBM 相关基因。该方法的新颖之处在于,将 TCGA 数据集的 GBM 多维数据与蛋白质-蛋白质相互作用相结合,构建一个加权异质网络,反映了基因之间的一般关系和疾病特异性关系。此外,还引入了一种具有抗扰性的传播算法,以精确地对 GBM 相关基因进行评分和排序。综合性能评估的结果表明,该方法明显优于基于单维数据的网络方法和其他现有方法。对排名靠前的基因的后续分析表明,它们可能在 GBM 中具有功能意义,这进一步证实了所提出方法的优越性。HNMD 的源代码和结果可以从以下网址下载:http://bioinformatics.ustc.edu.cn/hnmd/

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验