Suppr超能文献

基于最小信息损失和直方图分布先验的去雾水下图像增强

Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior.

出版信息

IEEE Trans Image Process. 2016 Dec;25(12):5664-5677. doi: 10.1109/TIP.2016.2612882. Epub 2016 Sep 22.

Abstract

Images captured under water are usually degraded due to the effects of absorption and scattering. Degraded underwater images show some limitations when they are used for display and analysis. For example, underwater images with low contrast and color cast decrease the accuracy rate of underwater object detection and marine biology recognition. To overcome those limitations, a systematic underwater image enhancement method, which includes an underwater image dehazing algorithm and a contrast enhancement algorithm, is proposed. Built on a minimum information loss principle, an effective underwater image dehazing algorithm is proposed to restore the visibility, color, and natural appearance of underwater images. A simple yet effective contrast enhancement algorithm is proposed based on a kind of histogram distribution prior, which increases the contrast and brightness of underwater images. The proposed method can yield two versions of enhanced output. One version with relatively genuine color and natural appearance is suitable for display. The other version with high contrast and brightness can be used for extracting more valuable information and unveiling more details. Simulation experiment, qualitative and quantitative comparisons, as well as color accuracy and application tests are conducted to evaluate the performance of the proposed method. Extensive experiments demonstrate that the proposed method achieves better visual quality, more valuable information, and more accurate color restoration than several state-of-the-art methods, even for underwater images taken under several challenging scenes.

摘要

水下拍摄的图像通常会因吸收和散射的影响而退化。退化的水下图像在用于显示和分析时存在一些局限性。例如,对比度低和有色偏的水下图像会降低水下目标检测和海洋生物识别的准确率。为了克服这些局限性,提出了一种系统的水下图像增强方法,该方法包括水下图像去雾算法和对比度增强算法。基于最小信息损失原则,提出了一种有效的水下图像去雾算法,以恢复水下图像的能见度、颜色和自然外观。基于一种直方图分布先验,提出了一种简单而有效的对比度增强算法,该算法提高了水下图像的对比度和亮度。所提出的方法可以产生两种增强输出版本。一种具有相对真实颜色和自然外观的版本适合显示。另一种具有高对比度和亮度的版本可用于提取更有价值的信息并揭示更多细节。进行了仿真实验、定性和定量比较以及颜色准确性和应用测试,以评估所提出方法的性能。大量实验表明,即使对于在几个具有挑战性的场景下拍摄的水下图像,所提出的方法也比几种最新方法具有更好的视觉质量、更有价值的信息和更准确的颜色恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验