Suppr超能文献

一种基于双注意力融合的有效水下图像增强变压器。

An effective transformer based on dual attention fusion for underwater image enhancement.

作者信息

Hu Xianjie, Liu Jing, Li Heng, Liu Hui, Xue Xiaojun

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.

出版信息

PeerJ Comput Sci. 2024 Apr 30;10:e1783. doi: 10.7717/peerj-cs.1783. eCollection 2024.

Abstract

Underwater images suffer from color shift, low contrast, and blurred details as a result of the absorption and scattering of light in the water. Degraded quality images can significantly interfere with underwater vision tasks. The existing data-driven based underwater image enhancement methods fail to sufficiently consider the impact related to the inconsistent attenuation of spatial areas and the degradation of color channel information. In addition, the dataset used for model training is small in scale and monotonous in the scene. Therefore, our approach solves the problem from two aspects of the network architecture design and the training dataset. We proposed a fusion attention block that integrate the non-local modeling ability of the Swin Transformer block into the local modeling ability of the residual convolution layer. Importantly, it can adaptively fuse non-local and local features carrying channel attention. Moreover, we synthesize underwater images with multiple water body types and different degradations using the underwater imaging model and adjusting the degradation parameters. There are also perceptual loss functions introduced to improve image vision. Experiments on synthetic and real-world underwater images have shown that our method is superior. Thus, our network is suitable for practical applications.

摘要

由于光在水中的吸收和散射,水下图像会出现颜色偏移、对比度低和细节模糊等问题。质量退化的图像会严重干扰水下视觉任务。现有的基于数据驱动的水下图像增强方法未能充分考虑与空间区域衰减不一致以及颜色通道信息退化相关的影响。此外,用于模型训练的数据集规模较小且场景单一。因此,我们的方法从网络架构设计和训练数据集两个方面解决了这个问题。我们提出了一种融合注意力块,将Swin Transformer块的非局部建模能力集成到残差卷积层的局部建模能力中。重要的是,它可以自适应地融合携带通道注意力的非局部和局部特征。此外,我们使用水下成像模型并调整退化参数来合成具有多种水体类型和不同退化程度的水下图像。还引入了感知损失函数来改善图像视觉效果。在合成和真实水下图像上的实验表明,我们的方法具有优越性。因此,我们的网络适用于实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f27/11157557/03f653fdd07c/peerj-cs-10-1783-g001.jpg

相似文献

1
An effective transformer based on dual attention fusion for underwater image enhancement.
PeerJ Comput Sci. 2024 Apr 30;10:e1783. doi: 10.7717/peerj-cs.1783. eCollection 2024.
2
U-Shape Transformer for Underwater Image Enhancement.
IEEE Trans Image Process. 2023;32:3066-3079. doi: 10.1109/TIP.2023.3276332. Epub 2023 May 30.
4
A Cascaded Multimodule Image Enhancement Framework for Underwater Visual Perception.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6286-6298. doi: 10.1109/TNNLS.2024.3397886. Epub 2025 Apr 4.
5
Underwater low-light enhancement network based on bright channel prior and attention mechanism.
PLoS One. 2023 Feb 2;18(2):e0281093. doi: 10.1371/journal.pone.0281093. eCollection 2023.
7
Dual-path joint correction network for underwater image enhancement.
Opt Express. 2022 Aug 29;30(18):33412-33432. doi: 10.1364/OE.468633.
8
Deep Supervised Residual Dense Network for Underwater Image Enhancement.
Sensors (Basel). 2021 May 10;21(9):3289. doi: 10.3390/s21093289.
9
Underwater image restoration based on dual information modulation network.
Sci Rep. 2024 Mar 5;14(1):5416. doi: 10.1038/s41598-024-55990-x.

本文引用的文献

1
Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset.
IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2822-2837. doi: 10.1109/TPAMI.2020.2977624. Epub 2021 Jul 1.
2
An Underwater Image Enhancement Benchmark Dataset and Beyond.
IEEE Trans Image Process. 2019 Nov 28. doi: 10.1109/TIP.2019.2955241.
3
Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks.
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2599-2613. doi: 10.1109/TPAMI.2018.2865304. Epub 2018 Aug 13.
4
Underwater Image Restoration Based on Image Blurriness and Light Absorption.
IEEE Trans Image Process. 2017 Apr;26(4):1579-1594. doi: 10.1109/TIP.2017.2663846. Epub 2017 Feb 2.
5
Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior.
IEEE Trans Image Process. 2016 Dec;25(12):5664-5677. doi: 10.1109/TIP.2016.2612882. Epub 2016 Sep 22.
6
Underwater Depth Estimation and Image Restoration Based on Single Images.
IEEE Comput Graph Appl. 2016 Mar-Apr;36(2):24-35. doi: 10.1109/MCG.2016.26.
7
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
8
An Underwater Color Image Quality Evaluation Metric.
IEEE Trans Image Process. 2015 Dec;24(12):6062-71. doi: 10.1109/TIP.2015.2491020. Epub 2015 Oct 19.
9
No-reference image quality assessment in the spatial domain.
IEEE Trans Image Process. 2012 Dec;21(12):4695-708. doi: 10.1109/TIP.2012.2214050. Epub 2012 Aug 17.
10
Underwater image enhancement by wavelength compensation and dehazing.
IEEE Trans Image Process. 2012 Apr;21(4):1756-69. doi: 10.1109/TIP.2011.2179666. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验