Suppr超能文献

利用荧光单壁碳纳米管传感器阵列对微生物中蛋白质外排的单分子检测。

Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays.

机构信息

Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, USA.

California Institute for Quantitative Biosciences (qb3), University of California-Berkeley, Berkeley, California 94720, USA.

出版信息

Nat Nanotechnol. 2017 May;12(4):368-377. doi: 10.1038/nnano.2016.284. Epub 2017 Jan 23.

Abstract

A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

摘要

纳米传感器阵列的一个显著优势是,通过与分析物的近距离放置,它们能够在溶液中实现超低的检测极限。在这里,我们展示了在微流控室中固定化的大肠杆菌(细菌)和巴斯德毕赤酵母(酵母)的单个蛋白质的无标记检测,实时测量单个生物体的蛋白质流出。该阵列使用适配体-锚定多核苷酸序列与近红外发射单壁碳纳米管的非共价缀合来制造,使用显示出优化传感器响应的可变化学间隔物。通过大的近红外荧光开启响应,从各种细胞系中选择性地检测到未标记的 RAP1 GTPase 和 HIV 整合酶蛋白。我们表明,大肠杆菌的诱导、蛋白质合成和蛋白质输出过程具有高度的随机性,导致蛋白质分泌的可变性,在饥饿条件下进行分裂的大肠杆菌细胞产生的分泌蛋白产物比不分裂的细胞少 66%。我们进一步证明了 T7 噬菌体感染大肠杆菌产生的独特蛋白质产物的检测,说明了纳米传感器阵列可以实现来自各种细胞类型的广泛蛋白质产物的实时单细胞分析。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验