Molecular Biosciences Division, School of Biosciences Cardiff University, Cardiff, UK.
Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada.
Nat Commun. 2024 Aug 29;15(1):7482. doi: 10.1038/s41467-024-51325-6.
Carbon nanotube field effect transistors (CNT-FET) hold great promise as next generation miniaturised biosensors. One bottleneck is modelling how proteins, with their distinctive electrostatic surfaces, interact with the CNT-FET to modulate conductance. Using advanced sampling molecular dynamics combined with non-canonical amino acid chemistry, we model protein electrostatic potential imparted on single walled CNTs (SWCNTs). We focus on using β-lactamase binding protein (BLIP2) as the receptor as it binds the antibiotic degrading enzymes, β-lactamases (BLs). BLIP2 is attached via the single selected residue to SWCNTs using genetically encoded phenyl azide photochemistry. Our devices detect two different BLs, TEM-1 and KPC-2, with each BL generating distinct conductance profiles due to their differing surface electrostatic profiles. Changes in conductance match the model electrostatic profile sampled by the SWCNTs on BL binding. Thus, our modelling approach combined with residue-specific receptor attachment could provide a general approach for systematic CNT-FET biosensor construction.
碳纳米管场效应晶体管 (CNT-FET) 有望成为下一代微型化生物传感器。一个瓶颈是如何建模蛋白质,其独特的静电表面,与 CNT-FET 相互作用以调节电导率。使用先进的采样分子动力学结合非规范氨基酸化学,我们对单壁碳纳米管 (SWCNT) 上赋予的蛋白质静电势进行建模。我们专注于使用β-内酰胺酶结合蛋白 (BLIP2) 作为受体,因为它结合了抗生素降解酶,β-内酰胺酶 (BLs)。BLIP2 通过单取代残基使用遗传编码的苯叠氮光化学附着到 SWCNT 上。我们的设备检测到两种不同的 BL,TEM-1 和 KPC-2,每个 BL 由于其不同的表面静电分布产生不同的电导谱。电导的变化与 BL 结合时 SWCNTs 采样的模型静电分布相匹配。因此,我们的建模方法结合了特定残基的受体附着,可以为系统的 CNT-FET 生物传感器构建提供一种通用方法。