Suppr超能文献

利用修正的克莱默斯-莫亚尔系数推断恶臭假单胞菌和大肠杆菌的趋化策略。

Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients.

作者信息

Pohl Oliver, Hintsche Marius, Alirezaeizanjani Zahra, Seyrich Maximilian, Beta Carsten, Stark Holger

机构信息

Institute of Theoretical Physics, Technical University Berlin, Berlin, Germany.

Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.

出版信息

PLoS Comput Biol. 2017 Jan 23;13(1):e1005329. doi: 10.1371/journal.pcbi.1005329. eCollection 2017 Jan.

Abstract

Many bacteria perform a run-and-tumble random walk to explore their surrounding and to perform chemotaxis. In this article we present a novel method to infer the relevant parameters of bacterial motion from experimental trajectories including the tumbling events. We introduce a stochastic model for the orientation angle, where a shot-noise process initiates tumbles, and analytically calculate conditional moments, reminiscent of Kramers-Moyal coefficients. Matching them with the moments calculated from experimental trajectories of the bacteria E. coli and Pseudomonas putida, we are able to infer their respective tumble rates, the rotational diffusion constants, and the distributions of tumble angles in good agreement with results from conventional tumble recognizers. We also define a novel tumble recognizer, which explicitly quantifies the error in recognizing tumbles. In the presence of a chemical gradient we condition the moments on the bacterial direction of motion and thereby explore the chemotaxis strategy. For both bacteria we recover and quantify the classical chemotactic strategy, where the tumble rate is smallest along the chemical gradient. In addition, for E. coli we detect some cells, which bias their mean tumble angle towards smaller values. Our findings are supported by a scaling analysis of appropriate ratios of conditional moments, which are directly calculated from experimental data.

摘要

许多细菌通过“奔跑-翻滚”的随机游走方式来探索周围环境并进行趋化作用。在本文中,我们提出了一种新方法,可从包含翻滚事件的实验轨迹中推断细菌运动的相关参数。我们为方向角引入了一个随机模型,其中散粒噪声过程引发翻滚,并通过解析计算条件矩,这让人联想到克拉默斯-莫亚尔系数。将这些条件矩与从大肠杆菌和恶臭假单胞菌的实验轨迹计算得到的矩进行匹配,我们能够推断出它们各自的翻滚速率、旋转扩散常数以及翻滚角度的分布,与传统翻滚识别器的结果高度吻合。我们还定义了一种新型翻滚识别器,它明确量化了识别翻滚时的误差。在存在化学梯度的情况下,我们根据细菌的运动方向对矩进行条件设定,从而探索趋化策略。对于这两种细菌,我们都恢复并量化了经典的趋化策略,即沿着化学梯度翻滚速率最小。此外,对于大肠杆菌,我们检测到一些细胞,它们将平均翻滚角度偏向较小的值。我们的发现得到了对条件矩适当比率的标度分析的支持,这些比率是直接从实验数据计算得出的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c2/5293273/21eafc86c482/pcbi.1005329.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验