Stanislas Virginie, Dalmasso Cyril, Ambroise Christophe
Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, 91 037, Evry Cedex, Paris, France.
BMC Bioinformatics. 2017 Jan 23;18(1):54. doi: 10.1186/s12859-017-1488-0.
A large amount of research has been devoted to the detection and investigation of epistatic interactions in genome-wide association studies (GWASs). Most of the literature focuses on low-order interactions between single-nucleotide polymorphisms (SNPs) with significant main effects.
In this paper we propose an original approach for detecting epistasis at the gene level, without systematically filtering on significant genes. We first compute interaction variables for each gene pair by finding its Eigen-Epistasis component, defined as the linear combination of Gene SNPs having the highest correlation with the phenotype. The selection of significant effects is done using a penalized regression method based on Group Lasso controlling the False Discovery Rate.
The method is tested against two recent alternative proposals from the literature using synthetic data, and shows good performances in different settings. We demonstrate the power of our approach by detecting new gene-gene interactions on three genome-wide association studies.
在全基因组关联研究(GWAS)中,大量研究致力于上位性相互作用的检测与研究。大多数文献聚焦于具有显著主效应的单核苷酸多态性(SNP)之间的低阶相互作用。
在本文中,我们提出了一种在基因水平检测上位性的原创方法,无需对显著基因进行系统筛选。我们首先通过找到其特征上位性成分来计算每个基因对的相互作用变量,该成分定义为与表型具有最高相关性的基因SNP的线性组合。使用基于控制错误发现率的组套索罚回归方法进行显著效应的选择。
使用合成数据将该方法与文献中最近的两个替代方案进行了测试,结果表明该方法在不同设置下均具有良好性能。我们通过在三项全基因组关联研究中检测新的基因-基因相互作用,证明了我们方法的有效性。