Suppr超能文献

一种癌细胞中弱极低频磁场量子生物效应的放大机制。

An amplification mechanism for weak ELF magnetic fields quantum-bio effects in cancer cells.

作者信息

Zandieh Amirali, Shariatpanahi Seyed Peyman, Ravassipour Amir Abas, Azadipour Javad, Nezamtaheri Maryam Sadat, Habibi-Kelishomi Zahra, Ghanizadeh Mojtaba, Same-Majandeh Ali, Majidzadeh-A Keivan, Taheri Amir, Ansari Alireza Madjid, Javidi Mohammad Amin, Pirnia Mohammad Mehdi, Goliaei Bahram

机构信息

Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.

出版信息

Sci Rep. 2025 Jan 23;15(1):2964. doi: 10.1038/s41598-025-87235-w.

Abstract

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III. We suggest such a resonator can act in two modes for distinct states in cancer cells: (1) cells at the edge of mitochondrial oscillation and (2) cells with local oscillatory patches. When exposed to magnetic fields, the first group exhibits high-amplitude oscillations, while the second group synchronizes to reach a whole-cell oscillation. Both types of amplification are frequency-dependent in the range of hertz and sub-hertz. We use UV radiation as a positive control to observe the two states of cells in DU and HELA cell lines. Application of magnetic fields shows frequency-dependent results on both the ROS and mitochondrial potential which agree with the model for both type of cells. We also observe the oscillatory behavior in the time-lapse fluorescence microscopy for 0.02 and 0.04 Hz magnetic fields. Finally, we investigate the dependence of the results on the field strength and propose a quantum spin-forbidden mechanism for the effect of magnetic fields on superoxide production in Q site of mitochondrial Complex III.

摘要

在生物过程中观察量子力学特性是一项惊人且重要的发现。一个例子是极低频弱磁场对细胞,尤其是癌细胞的影响,这一例子正获得越来越多的实验证据和实际应用。在本研究中,我们使用癌细胞中活性氧(ROS)动力学的数学模型,来展示ROS振荡模式如何作为一个谐振器,放大磁场对线粒体复合物III中自由基对动力学的微小影响。我们认为,这样一个谐振器在癌细胞的不同状态下可以以两种模式起作用:(1)处于线粒体振荡边缘的细胞和(2)具有局部振荡斑块的细胞。当暴露于磁场中时,第一组细胞表现出高振幅振荡,而第二组细胞则同步达到全细胞振荡。这两种放大类型在赫兹和亚赫兹范围内均与频率相关。我们使用紫外线辐射作为阳性对照,来观察DU和HELA细胞系中细胞的两种状态。磁场施加对ROS和线粒体电位均显示出频率依赖性结果,这与两种类型细胞的模型相符。我们还在延时荧光显微镜下观察了0.02和0.04赫兹磁场下的振荡行为。最后,我们研究了结果对场强的依赖性,并提出了一种量子自旋禁戒机制,用于解释磁场对线粒体复合物III的Q位点中超氧化物产生的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7911/11757740/db30f0297214/41598_2025_87235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验