Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
College of Chemistry & Chemical Engineering, Baoji University of Arts & Sciences, Baoji, 721013, P. R. China.
Nanoscale. 2017 Feb 2;9(5):1834-1839. doi: 10.1039/c6nr09739a.
We reported a facile and scalable salt-templated approach to produce monodisperse Rh nanoparticles (NPs) on ultrathin carbon nanosheets with the assistance of calcination under inert gas. More importantly, in spite of the essentially poor ORR activity of Rh/C, the acquired Rh/C hybrid nanosheets display a comparable ORR activity to the optimal commercial Pt/C catalyst, which may be due to the extra-small size of Rh NPs and the 2D defect-rich amorphous carbon nanosheets that can facilitate the charge transfer and reactive surface exposure. Moreover, Rh/C nanosheets present the optimal current density and best durability with the minimum decline during the entire test, so that ∼93% activity after 20 000 s is achieved, indicating a good lifetime for ORR. In contrast, commercial Pt/C and commercial Rh/C exhibited worse durability, so that ∼74% and ∼85% activities after 20 000 s are maintained. What's more, in the model system of reduction of 4-nitrophenol (4-NP), the kinetic constant k for Rh/C nanosheets is 3.1 × 10, which is 4.5 times than that of the commercial Rh/C catalyst, revealing that our Rh/C hybrid nanosheets can be potentially applied in industrial catalytic hydrogenation. This work opens a novel and facile way for the rest of the precious metal NPs to be supported on ultrathin carbon nanosheets for heterogeneous catalysis.
我们报道了一种简便且可扩展的盐模板方法,在惰性气体下煅烧的辅助下,在超薄碳纳米片上制备单分散 Rh 纳米颗粒 (NPs)。更重要的是,尽管 Rh/C 的基本 ORR 活性很差,但所获得的 Rh/C 杂化纳米片显示出与最佳商业 Pt/C 催化剂相当的 ORR 活性,这可能是由于 Rh NPs 的超小尺寸和二维富含缺陷的无定形碳纳米片可以促进电荷转移和反应表面暴露。此外,Rh/C 纳米片具有最佳的电流密度和最佳的耐久性,在整个测试过程中最小的下降,因此在 20000 s 后达到约 93%的活性,表明其具有良好的 ORR 寿命。相比之下,商业 Pt/C 和商业 Rh/C 的耐久性更差,因此在 20000 s 后分别保持约 74%和约 85%的活性。更重要的是,在 4-硝基苯酚 (4-NP) 还原的模型体系中,Rh/C 纳米片的动力学常数 k 为 3.1×10,是商业 Rh/C 催化剂的 4.5 倍,表明我们的 Rh/C 杂化纳米片可潜在应用于工业催化加氢。这项工作为将其余贵金属 NPs 负载在超薄碳纳米片上用于多相催化开辟了一种新颖而简便的方法。