Suppr超能文献

利用高分辨率质谱数据鉴定已知-未知化合物时的拟议置信度量表和识别分数

Proposed Confidence Scale and ID Score in the Identification of Known-Unknown Compounds Using High Resolution MS Data.

作者信息

Rochat Bertrand

机构信息

Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital of Lausanne, 1011, Lausanne, Switzerland.

出版信息

J Am Soc Mass Spectrom. 2017 Apr;28(4):709-723. doi: 10.1007/s13361-016-1556-0. Epub 2017 Jan 23.

Abstract

High-resolution (HR) MS instruments recording HR-full scan allow analysts to go further beyond pre-acquisition choices. Untargeted acquisition can reveal unexpected compounds or concentrations and can be performed for preliminary diagnosis attempt. Then, revealed compounds will have to be identified for interpretations. Whereas the need of reference standards is mandatory to confirm identification, the diverse information collected from HRMS allows identifying unknown compounds with relatively high degree of confidence without reference standards injected in the same analytical sequence. However, there is a necessity to evaluate the degree of confidence in putative identifications, possibly before further targeted analyses. This is why a confidence scale and a score in the identification of (non-peptidic) known-unknown, defined as compounds with entries in database, is proposed for (LC-) HRMS data. The scale is based on two representative documents edited by the European Commission (2007/657/EC) and the Metabolomics Standard Initiative (MSI), in an attempt to build a bridge between the communities of metabolomics and screening labs. With this confidence scale, an identification (ID) score is determined as [a number, a letter, and a number] (e.g., 2D3), from the following three criteria: I, a General Identification Category (1, confirmed, 2, putatively identified, 3, annotated compounds/classes, and 4, unknown); II, a Chromatography Class based on the relative retention time (from the narrowest tolerance, A, to no chromatographic references, D); and III, an Identification Point Level (1, very high, 2, high, and 3, normal level) based on the number of identification points collected. Three putative identification examples of known-unknown will be presented. Graphical Abstract ᅟ.

摘要

记录高分辨全扫描的高分辨率(HR)质谱仪器使分析人员能够在采集前的选择基础上更进一步。非靶向采集可以揭示意外的化合物或浓度,可用于初步诊断尝试。然后,需要对揭示出的化合物进行鉴定以便解释。虽然确认鉴定必须有参考标准品,但从高分辨质谱收集的各种信息允许在不注入相同分析序列中的参考标准品的情况下,以相对较高的置信度鉴定未知化合物。然而,有必要在进一步的靶向分析之前评估推定鉴定的置信度。这就是为什么针对(液相色谱 -)高分辨质谱数据,提出了一种用于鉴定(非肽类)已知 - 未知物(定义为数据库中有条目的化合物)的置信度量表和分数。该量表基于欧盟委员会(2007/657/EC)和代谢组学标准倡议(MSI)编辑的两份代表性文件,试图在代谢组学和筛查实验室群体之间架起一座桥梁。使用这个置信度量表,根据以下三个标准确定一个鉴定(ID)分数为[一个数字、一个字母和一个数字](例如,2D3):I,一般鉴定类别(1,确认;2,推定鉴定;3,注释的化合物/类别;4,未知);II,基于相对保留时间的色谱类别(从最窄容差A到无色谱参考D);III,基于收集的鉴定点数的鉴定点水平(1,非常高;2,高;3,正常水平)。将给出三个已知 - 未知物的推定鉴定示例。图形摘要ᅟ。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验