Bossert Patricia, Thomsen Gerald H
Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University.
Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University;
J Vis Exp. 2017 Jan 14(119):54626. doi: 10.3791/54626.
Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.
刺胞动物,特别是水螅,是最早被证明能够再生受损或切断结构的动物,事实上,250多年前,特里布莱的这项研究通过其工作开启了现代生物学探究。目前,再生研究再度兴起,既使用“经典”的再生生物,如水螅、涡虫和有尾目动物,也涵盖了从海绵动物到哺乳动物等后生动物范围内越来越广泛的物种。除了作为一种生物学现象本身具有吸引力之外,了解再生在各种物种中的作用机制,将让我们知晓再生过程是否具有共同特征,以及是否存在特定物种或特定环境的细胞和分子机制。星状海葵(Nematostella vectensis)是一种新兴的再生模式生物。与水螅一样,星状海葵是古老的刺胞动物门的成员,但属于珊瑚虫纲,是水螅虫纲的姐妹进化枝,在进化上更为基础。因此,将星状海葵的再生方面与水螅和其他刺胞动物的再生进行比较和对比将会很有趣。在本文中,我们介绍了一种对半切开、观察和分类星状海葵成体口盘端(称为柄部)再生的方法。柄部自然会进行分裂,作为无性繁殖的一种方式,柄部的自然分裂或人工切除都会触发复杂形态的重新生长和重塑。在这里,我们在星状海葵再生分期系统(NRSS)中编纂了这些简单的形态变化。我们使用NRSS来测试氯喹的效果,氯喹是一种溶酶体功能抑制剂,可阻断自噬。结果表明,当自噬受到抑制时,息肉结构的再生,尤其是隔膜的再生会出现异常。