Suppr超能文献

蛋白质模板化片段连接——从分子识别到药物发现。

Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.

机构信息

Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin, 14195, Germany.

出版信息

Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7358-7378. doi: 10.1002/anie.201610372. Epub 2017 May 31.

Abstract

Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.

摘要

蛋白质模板化片段连接是一种支持药物发现的新概念,可以帮助提高蛋白质配体的效力。蛋白质模板化片段连接是小分子(“片段”)之间的化学反应,利用蛋白质的表面作为反应容器,催化形成具有增加结合亲和力的蛋白质配体。该方法利用蛋白质对反应性小分子片段的分子识别,既用于配体组装,也用于鉴定具有生物活性的片段组合。这样,化学合成和生物测定就集成在一个步骤中。本文讨论了可逆和不可逆片段连接的生物物理基础,并概述了检测蛋白质模板化连接产物的现有方法。还回顾了该概念在药物发现中的化学范围、最近的应用以及未来的潜力。

相似文献

1
Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.
Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7358-7378. doi: 10.1002/anie.201610372. Epub 2017 May 31.
2
Mass spectrometry for fragment screening.
Essays Biochem. 2017 Nov 8;61(5):465-473. doi: 10.1042/EBC20170071.
3
Counting on Fragment Based Drug Design Approach for Drug Discovery.
Curr Top Med Chem. 2018;18(27):2284-2293. doi: 10.2174/1568026619666181130134250.
4
Biophysical screening for the discovery of small-molecule ligands.
Methods Mol Biol. 2013;1008:357-88. doi: 10.1007/978-1-62703-398-5_13.
5
Fragments: where are we now?
Biochem Soc Trans. 2020 Feb 28;48(1):271-280. doi: 10.1042/BST20190694.
6
[Progress in the fragment-based drug discovery].
Yao Xue Xue Bao. 2013 Jan;48(1):14-24.
7
Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.
Eur J Pharm Sci. 2015 Aug 30;76:83-94. doi: 10.1016/j.ejps.2015.05.001. Epub 2015 May 4.
8
A three-stage biophysical screening cascade for fragment-based drug discovery.
Nat Protoc. 2013 Nov;8(11):2309-24. doi: 10.1038/nprot.2013.130. Epub 2013 Oct 24.
9
Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
Cell. 2017 Jan 26;168(3):527-541.e29. doi: 10.1016/j.cell.2016.12.029. Epub 2017 Jan 19.
10
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12984-9. doi: 10.1073/pnas.1304045110. Epub 2013 Jul 19.

引用本文的文献

1
Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation.
JACS Au. 2024 Nov 25;4(12):4780-4789. doi: 10.1021/jacsau.4c00711. eCollection 2024 Dec 23.
2
3
In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery.
Angew Chem Weinheim Bergstr Ger. 2022 Nov 7;134(45):e202211510. doi: 10.1002/ange.202211510. Epub 2022 Oct 10.
4
Isomerization of bioactive acylhydrazones triggered by light or thiols.
Nat Chem. 2023 Sep;15(9):1285-1295. doi: 10.1038/s41557-023-01239-5. Epub 2023 Jun 12.
5
Medicinal chemical optimization of fluorescent pyrrole-based COX-2 probes.
Tetrahedron. 2022 Sep 24;123. doi: 10.1016/j.tet.2022.132990. Epub 2022 Aug 28.
7
Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV.
Pharmaceuticals (Basel). 2022 Nov 15;15(11):1415. doi: 10.3390/ph15111415.
8
In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery.
Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202211510. doi: 10.1002/anie.202211510. Epub 2022 Oct 11.
9
Templated Generation of a Bcl-x Inhibitor by Isomer-Free SPAAC Based on Azacyclonon-5-yne.
Chemistry. 2022 Nov 25;28(66):e202202259. doi: 10.1002/chem.202202259. Epub 2022 Oct 1.
10
A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments.
Chemistry. 2022 Oct 12;28(57):e202201282. doi: 10.1002/chem.202201282. Epub 2022 Aug 23.

本文引用的文献

1
Target-Accelerated Combinatorial Synthesis and Discovery of Highly Potent Antibiotics Effective Against Vancomycin-Resistant Bacteria.
Angew Chem Int Ed Engl. 2000 Nov 3;39(21):3823-3828. doi: 10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3.
2
Protein-Templated Formation of an Inhibitor of the Blood Coagulation Factor Xa through a Background-Free Amidation Reaction.
Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3718-3722. doi: 10.1002/anie.201611547. Epub 2017 Feb 15.
5
Native Mass Spectrometry in Fragment-Based Drug Discovery.
Molecules. 2016 Jul 28;21(8):984. doi: 10.3390/molecules21080984.
8
Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey.
Future Med Chem. 2016;8(4):381-404. doi: 10.4155/fmc-2015-0007. Epub 2016 Feb 15.
9
10
Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.
J Am Chem Soc. 2015 Dec 23;137(50):15624-7. doi: 10.1021/jacs.5b09817. Epub 2015 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验