Cano-Velázquez M S, Buntinx S, Hendriks A L, van Klinken A, Li C, Heijnen B J, Dolci M, Picelli L, Abdelkhalik M S, Sevo P, Petruzzella M, Pagliano F, Hakkel K D, van Elst D M J, van Veldhoven P J, Verhagen E, Zijlstra P, Fiore A
Department of Applied Physics and Science Education, and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
MantiSpectra B.V, Eindhoven 5612 AE, The Netherlands.
ACS Nano. 2025 Aug 5;19(30):27515-27525. doi: 10.1021/acsnano.5c06561. Epub 2025 Jul 21.
Nanophotonic sensors offer precision, remote read-out, and immunity to electromagnetic interference but face adoption challenges due to complex, costly readout instrumentation, typically based on high resolution. This article challenges the notion that high spectral resolution is necessary for high-performance optical sensing. We propose co-optimizing the line widths of the sensor and readout to achieve picometer-level precision using low-resolution multispectral detector arrays and incoherent light sources. This approach is validated in temperature sensing, fiber-tip refractive index sensing, and biosensing with nanophotonic transducers, achieving superior precision to high-resolution spectrometers. This paradigm change in readout will enable optical sensing systems with costs and dimensions comparable to electronic sensors.
纳米光子传感器具有精度高、可远程读出以及抗电磁干扰等优点,但由于其读出仪器通常基于高分辨率,结构复杂且成本高昂,因此在实际应用中面临着诸多挑战。本文对高性能光学传感必须具备高光谱分辨率这一观点提出了质疑。我们建议通过共同优化传感器和读出装置的线宽,利用低分辨率多光谱探测器阵列和非相干光源来实现皮米级精度。这种方法已在温度传感、光纤尖端折射率传感以及使用纳米光子换能器的生物传感中得到验证,其精度优于高分辨率光谱仪。读出方式的这一范式转变将使光学传感系统的成本和尺寸能够与电子传感器相媲美。