Suppr超能文献

光学相干断层扫描图像中甲状旁腺的自动识别

Automatic identification of parathyroid in optical coherence tomography images.

作者信息

Hou Fang, Yu Yang, Liang Yanmei

机构信息

Institute of Modern Optics, Nankai University, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Tianjin, 300071, China.

Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, Oncology Key Laboratory of Cancer Prevention & Therapy, Tianjin, 300060, China.

出版信息

Lasers Surg Med. 2017 Mar;49(3):305-311. doi: 10.1002/lsm.22622. Epub 2017 Jan 27.

Abstract

BACKGROUND AND OBJECTIVE

The identification and preservation of parathyroid is a major problem in thyroid surgery. In order to solve this problem, optical coherence tomography was involved as a real-time, non-invasive high-resolution imaging technique. This study demonstrated an effective and fast method to distinguish parathyroid tissue from thyroid, lymph node, and adipose tissue in their ex vivo optical coherence tomography (OCT) images automatically.

METHODS

OCT images were obtained from parathyroid, thyroid, lymph node, and adipose tissue, respectively. A classification and an identification system based on texture features analysis and back propagation artificial neural network (BP-ANN) were established to classify the four types of tissue and identify each of the four types automatically.

RESULTS

A total of 248 OCT images were taken from 16 patients undergoing thyroidectomy. The accuracy of classification for parathyroid, thyroid, lymph node, and adipose were 99.21, 98.43, 97.65, and 98.43%, respectively.

CONCLUSION

The proposed automatic identification method is capable of distinguishing among parathyroid, thyroid, lymph, and adipose automatically and effectively. Compared with the identification results of human, it has a better accuracy and reliability. For identifying parathyroid from the other entities, it has a satisfying performance. Lasers Surg. Med. 49:305-311, 2017. © 2017 Wiley Periodicals, Inc.

摘要

背景与目的

甲状旁腺的识别与保护是甲状腺手术中的一个主要问题。为了解决这一问题,光学相干断层扫描作为一种实时、非侵入性的高分辨率成像技术被应用。本研究展示了一种有效且快速的方法,可在离体光学相干断层扫描(OCT)图像中自动将甲状旁腺组织与甲状腺、淋巴结及脂肪组织区分开来。

方法

分别获取甲状旁腺、甲状腺、淋巴结及脂肪组织的OCT图像。建立基于纹理特征分析和反向传播人工神经网络(BP-ANN)的分类与识别系统,对这四种组织类型进行分类并自动识别每一种类型。

结果

从16例行甲状腺切除术的患者身上共采集了248张OCT图像。甲状旁腺、甲状腺、淋巴结及脂肪组织的分类准确率分别为99.21%、98.43%、97.65%和98.43%。

结论

所提出的自动识别方法能够自动且有效地区分甲状旁腺、甲状腺、淋巴及脂肪组织。与人工识别结果相比,其具有更高的准确性和可靠性。在从其他组织中识别甲状旁腺方面,它具有令人满意的性能。《激光外科与医学》49:305 - 311, 2017。© 2017威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验