Shin Gunchul, Gomez Adrian M, Al-Hasani Ream, Jeong Yu Ra, Kim Jeonghyun, Xie Zhaoqian, Banks Anthony, Lee Seung Min, Han Sang Youn, Yoo Chul Jong, Lee Jong-Lam, Lee Seung Hee, Kurniawan Jonas, Tureb Jacob, Guo Zhongzhu, Yoon Jangyeol, Park Sung-Il, Bang Sang Yun, Nam Yoonho, Walicki Marie C, Samineni Vijay K, Mickle Aaron D, Lee Kunhyuk, Heo Seung Yun, McCall Jordan G, Pan Taisong, Wang Liang, Feng Xue, Kim Tae-Il, Kim Jong Kyu, Li Yuhang, Huang Yonggang, Gereau Robert W, Ha Jeong Sook, Bruchas Michael R, Rogers John A
Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Neuron. 2017 Feb 8;93(3):509-521.e3. doi: 10.1016/j.neuron.2016.12.031. Epub 2017 Jan 26.
In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications.
体内光遗传学为剖析与神经精神疾病相关的神经回路提供了独特而强大的能力。然而,此类研究的传统硬件将实验动物物理连接到外部光源,限制了可能的实验范围。新兴的无线选项提供了重要的能力,避免了其中一些限制,但目前的尺寸、体积、重量和无线覆盖范围往往存在劣势。在此,我们展示了一种基于无线近场功率传输以及小型化、薄型、柔性光电子植入物的简单而强大的装置,可在各种行为范式中实现完全光学控制。这些装置将连接到微米级、可注射发光二极管(LED)的皮下磁线圈天线相结合,能够在从紫外到蓝、绿黄和红的波长范围内运行。一个外部环形天线允许在众多行为装置中进行强大、直接的应用。其结果是一种易于大规模生产、用户友好的技术,在光遗传学应用方面具有广阔的潜力。