Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA.
Nat Protoc. 2017 Feb;12(2):219-237. doi: 10.1038/nprot.2016.155. Epub 2017 Jan 5.
This Protocol Extension describes the fabrication and technical procedures for implementing ultrathin, flexible optofluidic neural probe systems that provide targeted, wireless delivery of fluids and light into the brains of awake, freely behaving animals. As a Protocol Extension article, this article describes an adaptation of an existing Protocol that offers additional applications. This protocol serves as an extension of an existing Nature Protocol describing optoelectronic devices for studying intact neural systems. Here, we describe additional features of fabricating self-contained platforms that involve flexible microfluidic probes, pumping systems, microscale inorganic LEDs, wireless-control electronics, and power supplies. These small, flexible probes minimize tissue damage and inflammation, making long-term implantation possible. The capabilities include wireless pharmacological and optical intervention for dissecting neural circuitry during behavior. The fabrication can be completed in 1-2 weeks, and the devices can be used for 1-2 weeks of in vivo rodent experiments. To successfully carry out the protocol, researchers should have basic skill sets in photolithography and soft lithography, as well as experience with stereotaxic surgery and behavioral neuroscience practices. These fabrication processes and implementation protocols will increase access to wireless optofluidic neural probes for advanced in vivo pharmacology and optogenetics in freely moving rodents.This protocol is an extension to: Nat. Protoc. 8, 2413-2428 (2013); doi:10.1038/nprot.2013.158; published online 07 November 2013.
本方案扩展描述了超薄、柔性光流控神经探针系统的制造和技术流程,该系统可将液体和光靶向、无线递送到清醒、自由活动动物的大脑中。作为一篇方案扩展文章,本文描述了对现有方案的改编,提供了额外的应用。该方案是描述用于研究完整神经系统的光电设备的现有自然方案的扩展。在这里,我们描述了制造自包含平台的额外功能,其中包括柔性微流控探针、泵送系统、微尺度无机 LED、无线控制电子设备和电源。这些小而灵活的探针最大限度地减少了组织损伤和炎症,从而实现了长期植入。该方案的功能包括无线药理学和光学干预,用于在行为过程中解剖神经回路。制造过程可以在 1-2 周内完成,并且设备可以在 1-2 周的体内啮齿动物实验中使用。为了成功实施该方案,研究人员应具备光刻和软光刻的基本技能,以及立体定向手术和行为神经科学实践的经验。这些制造工艺和实施方案将增加对无线光流控神经探针的访问,以用于在自由活动的啮齿动物中进行高级体内药理学和光遗传学研究。本方案是对:Nat. Protoc. 8, 2413-2428 (2013); doi:10.1038/nprot.2013.158; published online 07 November 2013 的扩展。