Krone Tanja, Albers Casper J, Timmerman Marieke E
Heymans Institute for Psychological Research, Psychometrics and Statistics, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands.
Qual Quant. 2017;51(1):1-21. doi: 10.1007/s11135-015-0290-1. Epub 2015 Dec 9.
Various estimators of the autoregressive model exist. We compare their performance in estimating the autocorrelation in short time series. In Study 1, under correct model specification, we compare the frequentist estimator, C-statistic, ordinary least squares estimator (OLS) and maximum likelihood estimator (MLE), and a Bayesian method, considering flat (B) and symmetrized reference (B) priors. In a completely crossed experimental design we vary lengths of time series (i.e., = 10, 25, 40, 50 and 100) and autocorrelation (from -0.90 to 0.90 with steps of 0.10). The results show a lowest bias for the B, and a lowest variability for . The power in different conditions is highest for B and OLS. For = 10, the absolute performance of all measurements is poor, as expected. In Study 2, we study robustness of the methods through misspecification by generating the data according to an ARMA(1,1) model, but still analysing the data with an AR(1) model. We use the two methods with the lowest bias for this study, i.e., B and MLE. The bias gets larger when the non-modelled moving average parameter becomes larger. Both the variability and power show dependency on the non-modelled parameter. The differences between the two estimation methods are negligible for all measurements.
自回归模型存在多种估计方法。我们比较了它们在估计短时间序列自相关方面的性能。在研究1中,在正确的模型设定下,我们比较了频率估计器、C统计量、普通最小二乘估计器(OLS)和最大似然估计器(MLE),以及一种贝叶斯方法,考虑了平坦(B)和对称参考(B)先验。在完全交叉实验设计中,我们改变时间序列的长度(即n = 10、25、40、50和100)以及自相关(从-0.90到0.90,步长为0.10)。结果表明,B的偏差最低,而[此处原文缺失具体内容]的变异性最低。在不同条件下,B和OLS的功效最高。对于n = 10,正如预期的那样,所有测量的绝对性能都很差。在研究2中,我们通过错误设定来研究这些方法的稳健性,即根据ARMA(1,1)模型生成数据,但仍用AR(1)模型分析数据。我们在本研究中使用偏差最低的两种方法,即B和MLE。当未建模的移动平均参数变大时,偏差会变大。变异性和功效都显示出对未建模参数的依赖性。对于所有测量,两种估计方法之间的差异可以忽略不计。