Suppr超能文献

在n = 1的心理自回归模型中纳入测量误差。

Incorporating measurement error in n = 1 psychological autoregressive modeling.

作者信息

Schuurman Noémi K, Houtveen Jan H, Hamaker Ellen L

机构信息

Department of Methodology and Statistics, Utrecht University Utrecht, Netherlands.

Academic Centre of Psychiatry, Groningen University Groningen, Netherlands.

出版信息

Front Psychol. 2015 Jul 28;6:1038. doi: 10.3389/fpsyg.2015.01038. eCollection 2015.

Abstract

Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30-50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters.

摘要

测量误差在心理数据中无处不在。然而,心理学中自回归时间序列分析的绝大多数应用都没有考虑测量误差。当数据中存在测量误差时忽略它会导致自回归参数出现偏差。我们讨论了两种考虑测量误差的模型:带白噪声项的自回归模型(AR+WN)和自回归移动平均(ARMA)模型。在一项模拟研究中,我们比较了这些模型的参数恢复性能,并比较了贝叶斯方法和频率主义方法的这种性能。我们发现总体而言,AR+WN模型表现更好。此外,我们发现对于实际的(即小的)样本量,心理学研究采用贝叶斯方法来拟合这些模型会有所助益。最后,我们通过对女性情绪数据的实证应用来说明在AR(1)模型中忽略测量误差的影响。我们发现,因人而异,总方差的大约30%至50%归因于测量误差,并且忽略这种测量误差会导致自回归参数被大幅低估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e4c/4516825/2f748eecb893/fpsyg-06-01038-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验