Krone Tanja, Albers Casper J, Timmerman Marieke E
Department of Psychometrics and Statistics, Heymans Institute, University of Groningen Groningen, Netherlands.
Front Psychol. 2016 Apr 7;7:486. doi: 10.3389/fpsyg.2016.00486. eCollection 2016.
To estimate a time series model for multiple individuals, a multilevel model may be used. In this paper we compare two estimation methods for the autocorrelation in Multilevel AR(1) models, namely Maximum Likelihood Estimation (MLE) and Bayesian Markov Chain Monte Carlo. Furthermore, we examine the difference between modeling fixed and random individual parameters. To this end, we perform a simulation study with a fully crossed design, in which we vary the length of the time series (10 or 25), the number of individuals per sample (10 or 25), the mean of the autocorrelation (-0.6 to 0.6 inclusive, in steps of 0.3) and the standard deviation of the autocorrelation (0.25 or 0.40). We found that the random estimators of the population autocorrelation show less bias and higher power, compared to the fixed estimators. As expected, the random estimators profit strongly from a higher number of individuals, while this effect is small for the fixed estimators. The fixed estimators profit slightly more from a higher number of time points than the random estimators. When possible, random estimation is preferred to fixed estimation. The difference between MLE and Bayesian estimation is nearly negligible. The Bayesian estimation shows a smaller bias, but MLE shows a smaller variability (i.e., standard deviation of the parameter estimates). Finally, better results are found for a higher number of individuals and time points, and for a lower individual variability of the autocorrelation. The effect of the size of the autocorrelation differs between outcome measures.
为了估计多个个体的时间序列模型,可以使用多层模型。在本文中,我们比较了多层AR(1)模型中自相关的两种估计方法,即最大似然估计(MLE)和贝叶斯马尔可夫链蒙特卡罗方法。此外,我们研究了固定个体参数建模和随机个体参数建模之间的差异。为此,我们进行了一项全交叉设计的模拟研究,其中我们改变了时间序列的长度(10或25)、每个样本中的个体数量(10或25)、自相关的均值(-0.6至0.6,含端点,步长为0.3)以及自相关的标准差(0.25或0.40)。我们发现,与固定估计量相比,总体自相关的随机估计量偏差更小且功效更高。正如预期的那样,随机估计量从更多个体中获益良多,而固定估计量的这种效应较小。固定估计量从更多时间点中获得的益处比随机估计量略多。如果可能,随机估计优于固定估计。MLE和贝叶斯估计之间的差异几乎可以忽略不计。贝叶斯估计偏差较小,但MLE的变异性较小(即参数估计的标准差)。最后,对于更多的个体和时间点,以及自相关的个体变异性较低的情况,会得到更好的结果。自相关大小的影响在不同的结果测量中有所不同。