Suppr超能文献

季节性发生强度的简单估计量。

Simple estimators of the intensity of seasonal occurrence.

作者信息

Brookhart M Alan, Rothman Kenneth J

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School Boston, MA, USA.

出版信息

BMC Med Res Methodol. 2008 Oct 22;8:67. doi: 10.1186/1471-2288-8-67.

Abstract

BACKGROUND

Edwards's method is a widely used approach for fitting a sine curve to a time-series of monthly frequencies. From this fitted curve, estimates of the seasonal intensity of occurrence (i.e., peak-to-low ratio of the fitted curve) can be generated.

METHODS

We discuss various approaches to the estimation of seasonal intensity assuming Edwards's periodic model, including maximum likelihood estimation (MLE), least squares, weighted least squares, and a new closed-form estimator based on a second-order moment statistic and non-transformed data. Through an extensive Monte Carlo simulation study, we compare the finite sample performance characteristics of the estimators discussed in this paper. Finally, all estimators and confidence interval procedures discussed are compared in a re-analysis of data on the seasonality of monocytic leukemia.

RESULTS

We find that Edwards's estimator is substantially biased, particularly for small numbers of events and very large or small amounts of seasonality. For the common setting of rare events and moderate seasonality, the new estimator proposed in this paper yields less finite sample bias and better mean squared error than either the MLE or weighted least squares. For large studies and strong seasonality, MLE or weighted least squares appears to be the optimal analytic method among those considered.

CONCLUSION

Edwards's estimator of the seasonal relative risk can exhibit substantial finite sample bias. The alternative estimators considered in this paper should be preferred.

摘要

背景

爱德华兹方法是一种广泛用于将正弦曲线拟合到月度频率时间序列的方法。通过这条拟合曲线,可以得出发生的季节性强度估计值(即拟合曲线的峰谷比)。

方法

我们讨论了在假设爱德华兹周期模型的情况下估计季节性强度的各种方法,包括最大似然估计(MLE)、最小二乘法、加权最小二乘法,以及一种基于二阶矩统计量和未转换数据的新的闭式估计器。通过广泛的蒙特卡罗模拟研究,我们比较了本文讨论的估计器的有限样本性能特征。最后,在对单核细胞白血病季节性数据的重新分析中,对所有讨论的估计器和置信区间程序进行了比较。

结果

我们发现爱德华兹估计器存在显著偏差,特别是对于事件数量较少以及季节性非常强或非常弱的情况。对于罕见事件和适度季节性的常见情况,本文提出的新估计器在有限样本中产生的偏差较小,并且比最大似然估计或加权最小二乘法具有更好的均方误差。对于大型研究和强季节性,在考虑的这些方法中,最大似然估计或加权最小二乘法似乎是最优的分析方法。

结论

爱德华兹季节性相对风险估计器可能存在显著的有限样本偏差。本文考虑的替代估计器更值得选用。

相似文献

1
Simple estimators of the intensity of seasonal occurrence.季节性发生强度的简单估计量。
BMC Med Res Methodol. 2008 Oct 22;8:67. doi: 10.1186/1471-2288-8-67.
4
Interval estimation of risk ratio in the simple compliance randomized trial.简单依从性随机试验中风险比的区间估计。
Contemp Clin Trials. 2007 Feb;28(2):120-9. doi: 10.1016/j.cct.2006.05.005. Epub 2006 Jul 3.
10
A note on interval estimation of kappa in a series of 2 x 2 tables.关于一系列2×2列联表中kappa值区间估计的一则注释。
Stat Med. 1999 Aug 15;18(15):2041-9. doi: 10.1002/(sici)1097-0258(19990815)18:15<2041::aid-sim167>3.0.co;2-b.

引用本文的文献

本文引用的文献

1
The recognition and estimation of cyclic trends.周期性趋势的识别与评估。
Ann Hum Genet. 1961 May;25:83-7. doi: 10.1111/j.1469-1809.1961.tb01501.x.
6
Cryptorchidism: seasonal variations in Greece do not support the theory of light.
Andrologia. 2002 Jun;34(3):194-203. doi: 10.1046/j.1439-0272.2002.00492.x.
7
A time to be born.生有时。
Am J Public Health. 2000 Jan;90(1):124-6. doi: 10.2105/ajph.90.1.124.
9
A generalization of Hewitt's test for seasonality.休伊特季节性检验的一种推广。
Int J Epidemiol. 1996 Jun;25(3):644-8. doi: 10.1093/ije/25.3.644.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验