Suppr超能文献

基于核磁共振的对感染不同程度尾孢叶斑病的甜菜植株田间生长叶片的代谢物谱分析

NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease.

作者信息

Sekiyama Yasuyo, Okazaki Kazuyuki, Kikuchi Jun, Ikeda Seishi

机构信息

Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8642, Japan.

RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 235-0045, Japan.

出版信息

Metabolites. 2017 Jan 26;7(1):4. doi: 10.3390/metabo7010004.

Abstract

leaf spot (CLS) is one of the most serious leaf diseases for sugar beet ( L.) worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR)-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. ¹H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D₂O)-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA) of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS) or orthogonal PLS (OPLS) analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs) of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance) from resistant genotypes (genotypes with resistance greater than a moderate level) before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort.

摘要

叶斑病(CLS)是全球范围内甜菜最严重的叶部病害之一。培育兼具高抗CLS能力和高产的甜菜品种对育种者来说是一项重大挑战。在本研究中,我们报告了对田间种植的、具有不同CLS抗性水平的一部分甜菜基因型叶片进行的基于核磁共振(NMR)的代谢谱分析。在四个时间点从12个甜菜基因型中采集叶片:幼苗期、早期生长阶段、根部膨大期和病害发展阶段。获取了可溶于基于重水(D₂O)的缓冲液中的叶部代谢物的¹H-NMR谱,并进行多变量分析。对甜菜叶片的NMR数据进行主成分分析(PCA)显示,不同生长阶段之间存在明显差异。在较晚的时间点,糖和甘氨酸甜菜碱含量增加,而胆碱含量降低。通过结合偏最小二乘投影到潜在结构(PLS)或正交PLS(OPLS)分析以及单变量分析,研究了叶部代谢物谱与对CLS的抗性水平之间的关系。很难建立一个精确预测每个基因型病害严重指数(DSI)的稳健模型;然而,在接种测试之前,γ-氨基丁酸(GABA)和谷氨酰胺(Gln)能够区分易感基因型(抗性较弱的基因型)和抗性基因型(抗性大于中等水平的基因型)。结果表明,育种者可能无需接种测试(接种测试需要大量时间和精力),而是基于叶部代谢物谱从育种计划中排除易感基因型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a25/5372207/05108021f7ff/metabolites-07-00004-g001.jpg

相似文献

3
Genomic characterization of bZIP gene family and patterns of gene regulation on resistance in sugar beet ( L.).
Front Genet. 2024 Jul 30;15:1430589. doi: 10.3389/fgene.2024.1430589. eCollection 2024.
4
Sensory assessment of sporulation for phenotyping the partial disease resistance of sugar beet genotypes.
Plant Methods. 2019 Nov 16;15:133. doi: 10.1186/s13007-019-0521-x. eCollection 2019.
5
Nighttime Applications of Germicidal UV Light to Suppress Cercospora Leaf Spot in Table Beet.
Plant Dis. 2024 Aug;108(8):2518-2529. doi: 10.1094/PDIS-12-23-2715-RE. Epub 2024 Aug 5.
7
Improvement of Lesion Phenotyping in Cercospora beticola-Sugar Beet Interaction by Hyperspectral Imaging.
Phytopathology. 2016 Feb;106(2):177-84. doi: 10.1094/PHYTO-04-15-0100-R. Epub 2015 Dec 29.
8
Identification and Precise Mapping of Resistant QTLs of Cercospora Leaf Spot Resistance in Sugar Beet (Beta vulgaris L.).
G3 (Bethesda). 2011 Sep;1(4):283-91. doi: 10.1534/g3.111.000513. Epub 2011 Sep 1.
9
Sugar Beet Root Storage Properties Are Unaffected by Cercospora Leaf Spot.
Plant Dis. 2023 Jun;107(6):1816-1821. doi: 10.1094/PDIS-09-22-2156-RE. Epub 2023 May 25.
10
First Report of QoI Insensitive Cercospora beticola on Sugar Beet in Ontario, Canada.
Plant Dis. 2013 Sep;97(9):1255. doi: 10.1094/PDIS-03-13-0285-PDN.

引用本文的文献

2
Cercospora leaf spot disease of sugar beet.
Plant Signal Behav. 2023 Dec 31;18(1):2214765. doi: 10.1080/15592324.2023.2214765.
3
Sugarcane Metabolome Compositional Stability in Pretreatment Processes for NMR Measurements.
Metabolites. 2022 Sep 14;12(9):862. doi: 10.3390/metabo12090862.
4
5
Metabolomic Evaluation of the Quality of Leaf Lettuce Grown in Practical Plant Factory to Capture Metabolite Signature.
Front Plant Sci. 2018 Jun 27;9:665. doi: 10.3389/fpls.2018.00665. eCollection 2018.
6
An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy.
Heliyon. 2018 Mar 1;4(2):e00531. doi: 10.1016/j.heliyon.2018.e00531. eCollection 2018 Feb.
7
Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Plant Leaves.
Front Plant Sci. 2017 Jul 18;8:1286. doi: 10.3389/fpls.2017.01286. eCollection 2017.

本文引用的文献

1
A Cerospora Leaf Spot Model for Sugar Beet: In Practice by an Industry.
Plant Dis. 1998 Jul;82(7):716-726. doi: 10.1094/PDIS.1998.82.7.716.
3
OMICS Technologies and Applications in Sugar Beet.
Front Plant Sci. 2016 Jun 22;7:900. doi: 10.3389/fpls.2016.00900. eCollection 2016.
4
Review of validation and reporting of non-targeted fingerprinting approaches for food authentication.
Anal Chim Acta. 2015 Jul 23;885:17-32. doi: 10.1016/j.aca.2015.06.003. Epub 2015 Jun 11.
5
Plant metabolite profiles and the buffering capacities of ecosystems.
Phytochemistry. 2015 Feb;110:6-12. doi: 10.1016/j.phytochem.2014.12.015. Epub 2015 Jan 3.
10
Identification and Precise Mapping of Resistant QTLs of Cercospora Leaf Spot Resistance in Sugar Beet (Beta vulgaris L.).
G3 (Bethesda). 2011 Sep;1(4):283-91. doi: 10.1534/g3.111.000513. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验