Crossley Dane A, Burggren Warren W, Reiber Carl L, Altimiras Jordi, Rodnick Kenneth J
Department of Biological Sciences, University of North Texas, Denton, Texas, USA.
School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA.
Compr Physiol. 2016 Dec 6;7(1):17-66. doi: 10.1002/cphy.c150010.
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017.
物质运输通常可定义为物质的移动。循环系统就是一个生物学实例,因为它在运输气体、营养物质、废物和化学信号方面发挥着作用。比较生理学在提供新见解和推进我们对各种循环系统中循环物质运输的理解方面有着悠久的历史。在这里,我们关注非模式生物的循环功能。无脊椎动物拥有多样的对流系统;其中最复杂的系统能产生压力,其功能水平与脊椎动物相当。许多无脊椎动物通过神经元、神经激素和骨骼肌活动来积极调节心血管功能。在脊椎动物中,我们对心脏形态、心肌细胞功能以及钙离子对收缩蛋白的调节的理解凸显了高度的保守性,但物种之间存在差异,且这些差异与不同的环境和体温相关。脊椎动物心脏功能和全身血压的关键调节因素包括自主神经系统、激素和心室充盈。进一步调节心血管功能的化学因素包括腺苷、利钠肽、精氨酸血管加压素、内皮素 -1、缓激肽、组胺、一氧化氮和硫化氢等等。非哺乳动物物种中也明显存在多样的血管形态以及冠状动脉和脑循环中血流的调节。心血管功能的动态调节与陆地运动、高空飞行、海洋哺乳动物的长时间潜水以及独特的形态(如长颈鹿)有关。未来的研究应探讨气体交换和对流运输的极限、不同分类群中高动脉压的进化以及心血管系统适应极端环境的重要性。© 2017美国生理学会。《综合生理学》7:17 - 66, 2017。