Suppr超能文献

快速真空烧结:一种用于制造用于骨组织工程的氟磷灰石陶瓷支架的新型技术。

Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering.

机构信息

Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa.

Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, Iowa.

出版信息

J Biomed Mater Res B Appl Biomater. 2018 Jan;106(1):291-299. doi: 10.1002/jbm.b.33825. Epub 2017 Jan 30.

Abstract

Macroporous bioceramic scaffolds are often fabricated via the foam replica technique, based on polymeric foam impregnation with a glass slurry, followed by slow heat treatment to allow for drying, polymeric burnout, and sintering of the glass particles. As a consequence, the process is time consuming and complicated by concurrent crystallization of the glass, often leading to incomplete sintering. Our goal was to investigate the effect of heating rate on sintering behavior, architecture, and mechanical properties of fluorapatite-based glass and glass-ceramic scaffolds. Glass scaffolds were prepared and sintered by rapid vacuum sintering (RVS) at 785°C under vacuum at a fast heating rate (55°C/min.) or without vacuum at a slow heating rate (2°C/min.). Two additional groups were further crystallized at 775°C/1 h. XRD confirmed the presence of fluorapatite for crystallized scaffolds. All groups presented interconnected porosity with a pore size in the 500 μm range. Scaffolds produced by RVS exhibited an excellent degree of sintering while scaffolds produced by slow sintering were incompletely sintered. The mean compressive strength was significantly higher for the RVS groups (1.52 ± 0.55 and 1.72 ± 0.61 MPa) compared to the slow-sintered groups (0.54 ± 0.30 and 0.45 ± 0.26 MPa). Meanwhile, the total production time was reduced by more than 12 h by using the RVS technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 291-299, 2018.

摘要

大孔生物陶瓷支架通常通过泡沫复制技术制造,该技术基于聚合物泡沫与玻璃浆料的浸渍,然后进行缓慢的热处理,以允许干燥、聚合物烧蚀和玻璃颗粒的烧结。因此,该过程耗时且复杂,同时玻璃的结晶也会导致不完全烧结。我们的目标是研究加热速率对氟磷灰石基玻璃和玻璃陶瓷支架的烧结行为、结构和力学性能的影响。玻璃支架通过快速真空烧结(RVS)在 785°C 下在真空中以快速加热速率(55°C/min.)或在缓慢加热速率(2°C/min.)下进行烧结。另外两组在 775°C/1 h 下进一步结晶。XRD 证实了结晶支架中存在氟磷灰石。所有组的孔隙率都呈现出相互连通的特点,孔径在 500 μm 范围内。通过 RVS 生产的支架表现出极好的烧结程度,而通过缓慢烧结生产的支架则烧结不完全。RVS 组的平均抗压强度明显高于缓慢烧结组(1.52±0.55 和 1.72±0.61 MPa)(0.54±0.30 和 0.45±0.26 MPa)。同时,通过使用 RVS 技术,总生产时间减少了 12 小时以上。©2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B:291-299, 2018。

相似文献

1
Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering.
J Biomed Mater Res B Appl Biomater. 2018 Jan;106(1):291-299. doi: 10.1002/jbm.b.33825. Epub 2017 Jan 30.
2
Low temperature sintering of fluorapatite glass-ceramics.
Dent Mater. 2014 Feb;30(2):112-21. doi: 10.1016/j.dental.2013.10.009. Epub 2013 Nov 16.
3
Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
J Biomater Appl. 2013 Mar;27(7):872-90. doi: 10.1177/0885328211429193. Epub 2011 Dec 29.
4
Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
J Mater Sci Mater Med. 2015 Jan;26(1):5346. doi: 10.1007/s10856-014-5346-6. Epub 2015 Jan 13.
5
Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering.
J Biomater Sci Polym Ed. 2019 May;30(7):561-579. doi: 10.1080/09205063.2019.1587697. Epub 2019 Mar 26.
6
Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
Biofabrication. 2015 Sep 10;7(3):035010. doi: 10.1088/1758-5090/7/3/035010.
8
Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds.
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:1281-1288. doi: 10.1016/j.msec.2017.03.001. Epub 2017 Mar 2.
9
Strontium-releasing fluorapatite glass-ceramic scaffolds: Structural characterization and in vivo performance.
Acta Biomater. 2018 Jul 15;75:463-471. doi: 10.1016/j.actbio.2018.05.047. Epub 2018 May 30.

引用本文的文献

2
Optimization of Fluorapatite/Bioactive Glass Nanocomposite Foams as Bone Tissue Scaffold: An in Vivo Study.
Int J Mol Cell Med. 2023;12(4):388-400. doi: 10.22088/IJMCM.BUMS.12.4.388.
3
Strontium-releasing fluorapatite glass-ceramic scaffolds: Structural characterization and in vivo performance.
Acta Biomater. 2018 Jul 15;75:463-471. doi: 10.1016/j.actbio.2018.05.047. Epub 2018 May 30.
4
Strontium-releasing fluorapatite glass-ceramics: Crystallization behavior, microstructure, and solubility.
J Biomed Mater Res B Appl Biomater. 2018 May;106(4):1421-1430. doi: 10.1002/jbm.b.33945. Epub 2017 Jun 21.

本文引用的文献

1
Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair.
Adv Funct Mater. 2013 Nov 26;23(44):5461-5476. doi: 10.1002/adfm.201301121. Epub 2013 Jun 13.
2
Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
Dent Mater. 2016 Jan;32(1):43-53. doi: 10.1016/j.dental.2015.09.008. Epub 2015 Sep 28.
3
Emerging ceramic-based materials for dentistry.
J Dent Res. 2014 Dec;93(12):1235-42. doi: 10.1177/0022034514553627. Epub 2014 Oct 1.
4
Low temperature sintering of fluorapatite glass-ceramics.
Dent Mater. 2014 Feb;30(2):112-21. doi: 10.1016/j.dental.2013.10.009. Epub 2013 Nov 16.
5
Sintering of calcium phosphate bioceramics.
Acta Biomater. 2013 Apr;9(4):5855-75. doi: 10.1016/j.actbio.2012.11.029. Epub 2012 Dec 2.
6
Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics.
J Biomed Mater Res B Appl Biomater. 2012 Jul;100(5):1198-205. doi: 10.1002/jbm.b.32684. Epub 2012 Mar 27.
7
A study of porcelain surfaces as utilized in fixed prosthodontics.
J Prosthet Dent. 1975 Sep;34(3):314-9. doi: 10.1016/0022-3913(75)90109-2.
8
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.
Acta Biomater. 2012 Apr;8(4):1401-21. doi: 10.1016/j.actbio.2011.11.017. Epub 2011 Nov 20.
9
Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics.
Dent Mater. 2012 Mar;28(3):252-60. doi: 10.1016/j.dental.2011.10.010. Epub 2011 Nov 9.
10
Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives.
Mater Sci Eng C Mater Biol Appl. 2011 Oct 10;31(7):1245-1256. doi: 10.1016/j.msec.2011.04.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验