Nurminen M
Department of Epidemiology and Biostatistics, Institute of Occupational Health, Helsinki, Finland.
Stat Med. 1989 Oct;8(10):1241-54. doi: 10.1002/sim.4780081008.
Recent developments in statistical methods for epidemiology have revived the application of sampling techniques in the design and analysis of cohort studies. The 'case-base' design involves sampling of both the cases and the cohort base of the study. This paper reviews some data-analytic imperfections of the approaches to risk ratio estimation, and modifies and advances a consistent likelihood-based procedure-analogous to Miettinen and Nurminen's proposal for a full cohort design--for interval estimation (and also point estimation and significance testing) in the context of binary case-base data. First, the procedure avoids the use of Taylor-series approximations to derive variance estimators for non-linear functions of parameters. Second, the asymptotic condition effects a simple computational expression for the chi-square function of risk ratios that is universally applicable to small samples. The statistical modelling underlying the method allows inferences about risk ratios without the assumption of rare disease either for the general population or for a particular base. The paper also extends the analysis to encompass stratified data. Finally, a numerical evaluation evinced the accurate small-sample properties of the proposed method.
流行病学统计方法的最新进展使抽样技术在队列研究的设计和分析中的应用得以复兴。“病例对照”设计涉及对研究中的病例和队列基础进行抽样。本文回顾了风险比估计方法在数据分析方面的一些不足之处,并修改并推进了一种基于似然性的一致程序——类似于米耶蒂宁和努尔米宁针对完整队列设计提出的方案——用于二元病例对照数据背景下的区间估计(以及点估计和显著性检验)。首先,该程序避免使用泰勒级数近似来推导参数非线性函数的方差估计量。其次,渐近条件给出了风险比卡方函数的一个简单计算表达式,该表达式普遍适用于小样本。该方法背后的统计建模允许在不假设一般人群或特定基础存在罕见疾病的情况下对风险比进行推断。本文还将分析扩展到涵盖分层数据。最后,数值评估表明了所提方法准确的小样本特性。