Max-Planck-Institut für Eisenforschung, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany.
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Nat Commun. 2017 Feb 1;8:14210. doi: 10.1038/ncomms14210.
The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.
最有效的微调金属合金的微观结构和力学性能的方法在于设计和使用非热相变。例如形状记忆合金和高强度钢,它们的年产量加起来达到 15 亿吨。在这些材料中,马氏体形成和机械孪晶通过成分调整来进行调控,以实现复杂的微观结构和有益的力学性能。在这里,我们报告了一种新的相变,通过配位体介导的转变,有可能通过纳米结构化拓宽钛合金的应用范围,钛合金是航空航天设计中最重要的结构材料。这是一种可逆的马氏体相变机制,最终导致纳米层状结构的α″(正交)马氏体与非热ω(a-ω,六方)的平面配位体相结合。这两个相在晶体学上都与母相β(BCC)基体相关。正如平面配位体所预期的那样,a-ω仅在异质界面处稳定。