Suppr超能文献

自表面电荷剥离和静电协调的二维杂化层。

Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore, Singapore.

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.

出版信息

Nat Commun. 2017 Feb 1;8:14224. doi: 10.1038/ncomms14224.

Abstract

At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of 'design-and-build' 2D layered heterojunctions for large-scale exploration and applications.

摘要

目前,通过连续薄膜外延生长实现原子级薄二维(2D)异质层结构的技术基础在原理上受到晶格匹配前提以及低产量和昂贵生产的限制。在这里,我们通过高度可扩展的自表面电荷剥落和静电耦合方法人为协调超薄 2D 异质层金属硫属化物。具体来说,大块金属硫属化物在无表面活性剂/插层剂的介质中自发剥落成超薄层,然后不受限制地与不同的过渡金属二硫化物 MoSe 进行静电耦合,形成可扩展的异质层杂化物。因此,表面和界面控制的光催化反应性被用作理想的测试平台,以验证各种 2D 超薄异质层材料的可靠性,这些材料表现出高光活性、有效的电荷转移和紧密接触界面,以实现稳定的循环和存储。这种合成方法使得独立的厚度和组成控制成为可能,有望推进“设计和构建”2D 层状异质结的发展,以进行大规模的探索和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ca/5296640/f916aaf82adb/ncomms14224-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验