Yang Jia, Ziade Elbara, Schmidt Aaron J
Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA.
Rev Sci Instrum. 2016 Jan;87(1):014901. doi: 10.1063/1.4939671.
We derive a generally applicable formula to calculate the precision of multi-parameter measurements that apply least squares algorithms. This formula, which accounts for experimental noise and uncertainty in the controlled model parameters, is then used to analyze the uncertainty of thermal property measurements with pump-probe thermoreflectance techniques. We compare the uncertainty of time domain thermoreflectance and frequency domain thermoreflectance (FDTR) when measuring bulk materials and thin films, considering simultaneous measurements of various combinations of thermal properties, including thermal conductivity, heat capacity, and thermal boundary conductance. We validate the uncertainty analysis using Monte Carlo simulations on data from FDTR measurements of an 80 nm gold film on fused silica.
我们推导了一个普遍适用的公式,用于计算应用最小二乘法算法的多参数测量的精度。该公式考虑了实验噪声和受控模型参数的不确定性,随后用于分析泵浦-探测热反射技术的热物性测量的不确定性。我们比较了时域热反射和频域热反射(FDTR)在测量块状材料和薄膜时的不确定性,同时考虑了包括热导率、热容和热边界 conductance 在内的各种热物性组合的同步测量。我们使用蒙特卡罗模拟对来自熔融石英上80 nm金膜的FDTR测量数据进行不确定性分析验证。