Suppr超能文献

基于时间结构支持向量机的联合特征选择与分类实现阿尔茨海默病的早期诊断

Early Diagnosis of Alzheimer's Disease by Joint Feature Selection and Classification on Temporally Structured Support Vector Machine.

作者信息

Zhu Yingying, Zhu Xiaofeng, Kim Minjeong, Shen Dinggang, Wu Guorong

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9900:264-272. doi: 10.1007/978-3-319-46720-7_31. Epub 2016 Oct 2.

Abstract

The diagnosis of Alzheimer's disease (AD) from neuroimaging data at the pre-clinical stage has been intensively investigated because of the immense social and economic cost. In the past decade, computational approaches on longitudinal image sequences have been actively investigated with special attention to Mild Cognitive Impairment (MCI), which is an intermediate stage between normal control (NC) and AD. However, current state-of-the-art diagnosis methods have limited power in clinical practice, due to the excessive requirements such as equal and immoderate number of scans in longitudinal imaging data. More critically, very few methods are specifically designed for the early alarm of AD uptake. To address these limitations, we propose a flexible spatial-temporal solution for early detection of AD by recognizing abnormal structure changes from longitudinal MR image sequence. Specifically, our method is leveraged by the non-reversible nature of AD progression. We employ temporally structured SVM to accurately alarm AD at early stage by enforcing the monotony on classification result to avoid unrealistic and inconsistent diagnosis result along time. Furthermore, in order to select best features which can well collaborate with the classifier, we present as joint feature selection and classification framework. The evaluation on more than 150 longitudinal subjects from ADNI dataset shows that our method is able to alarm the conversion of AD 12 months prior to the clinical diagnosis with at least 82.5 % accuracy. It is worth noting that our proposed method works on widely used MR images and does not have restriction on the number of scans in the longitudinal sequence, which is very attractive to real clinical practice.

摘要

由于巨大的社会和经济成本,从临床前阶段的神经影像数据中诊断阿尔茨海默病(AD)受到了广泛研究。在过去十年中,针对纵向图像序列的计算方法得到了积极探索,其中特别关注轻度认知障碍(MCI),它是正常对照(NC)和AD之间的中间阶段。然而,当前最先进的诊断方法在临床实践中的效能有限,因为纵向成像数据存在诸如扫描次数相等且过多等过高要求。更关键的是,很少有方法专门设计用于AD发病的早期预警。为了解决这些局限性,我们提出了一种灵活的时空解决方案,通过识别纵向MR图像序列中的异常结构变化来早期检测AD。具体而言,我们的方法利用了AD进展的不可逆性质。我们采用时间结构化支持向量机,通过强制分类结果的单调性来在早期准确预警AD,以避免随时间出现不现实和不一致的诊断结果。此外,为了选择能与分类器良好协作的最佳特征,我们提出了一个联合特征选择和分类框架。对来自ADNI数据集的150多名纵向受试者的评估表明,我们的方法能够在临床诊断前12个月预警AD的转化,准确率至少为82.5%。值得注意的是,我们提出的方法适用于广泛使用的MR图像,并且对纵向序列中的扫描次数没有限制,这对实际临床实践非常有吸引力。

相似文献

1
Early Diagnosis of Alzheimer's Disease by Joint Feature Selection and Classification on Temporally Structured Support Vector Machine.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:264-272. doi: 10.1007/978-3-319-46720-7_31. Epub 2016 Oct 2.
2
Long range early diagnosis of Alzheimer's disease using longitudinal MR imaging data.
Med Image Anal. 2021 Jan;67:101825. doi: 10.1016/j.media.2020.101825. Epub 2020 Oct 14.
5
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.
6
Deep Learning for Alzheimer's Disease Classification using Texture Features.
Curr Med Imaging Rev. 2019;15(7):689-698. doi: 10.2174/1573405615666190404163233.
7
A fuzzy-based system reveals Alzheimer's Disease onset in subjects with Mild Cognitive Impairment.
Phys Med. 2017 Jun;38:36-44. doi: 10.1016/j.ejmp.2017.04.027. Epub 2017 May 9.
8
Alzheimer's Disease Classification Based on Multi-feature Fusion.
Curr Med Imaging Rev. 2019;15(2):161-169. doi: 10.2174/1573405614666181012102626.
9
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
10
Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.
J Neurosci Methods. 2017 Apr 15;282:69-80. doi: 10.1016/j.jneumeth.2017.03.006. Epub 2017 Mar 9.

引用本文的文献

2
Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review.
Diagnostics (Basel). 2024 Jun 17;14(12):1281. doi: 10.3390/diagnostics14121281.
3
Transfer Learning for Alzheimer's Disease through Neuroimaging Biomarkers: A Systematic Review.
Sensors (Basel). 2021 Oct 31;21(21):7259. doi: 10.3390/s21217259.
4
Long range early diagnosis of Alzheimer's disease using longitudinal MR imaging data.
Med Image Anal. 2021 Jan;67:101825. doi: 10.1016/j.media.2020.101825. Epub 2020 Oct 14.
5
A distributed multitask multimodal approach for the prediction of Alzheimer's disease in a longitudinal study.
Neuroimage. 2020 Feb 1;206:116317. doi: 10.1016/j.neuroimage.2019.116317. Epub 2019 Nov 1.
7
Personalized Diagnosis for Alzheimer's Disease.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:205-213. doi: 10.1007/978-3-319-66179-7_24. Epub 2017 Sep 4.
9
Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers.
IEEE Trans Big Data. 2017 Oct-Dec;3(4):405-414. doi: 10.1109/TBDATA.2017.2735991. Epub 2017 Aug 4.
10
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Data.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:72-80. doi: 10.1007/978-3-319-66179-7_9. Epub 2017 Sep 4.

本文引用的文献

1
Convolutional Sparse Coding for Trajectory Reconstruction.
IEEE Trans Pattern Anal Mach Intell. 2015 Mar;37(3):529-40. doi: 10.1109/TPAMI.2013.2295311.
2
Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series.
Inf Process Med Imaging. 2015;24:626-37. doi: 10.1007/978-3-319-19992-4_49.
3
A data-driven model of biomarker changes in sporadic Alzheimer's disease.
Brain. 2014 Sep;137(Pt 9):2564-77. doi: 10.1093/brain/awu176. Epub 2014 Jul 9.
5
Neuroimaging biomarkers of neurodegenerative diseases and dementia.
Semin Neurol. 2013 Sep;33(4):386-416. doi: 10.1055/s-0033-1359312. Epub 2013 Nov 14.
6
An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease.
Neuroimage. 2012 Apr 15;60(3):1880-9. doi: 10.1016/j.neuroimage.2012.01.062. Epub 2012 Jan 16.
7
Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry.
Neuroimage. 2011 Jul 1;57(1):5-14. doi: 10.1016/j.neuroimage.2011.01.079. Epub 2011 Feb 23.
8
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features.
Neurobiol Aging. 2012 Feb;33(2):427.e15-30. doi: 10.1016/j.neurobiolaging.2010.11.008. Epub 2011 Jan 26.
9
Mapping Alzheimer's disease progression in 1309 MRI scans: power estimates for different inter-scan intervals.
Neuroimage. 2010 May 15;51(1):63-75. doi: 10.1016/j.neuroimage.2010.01.104. Epub 2010 Feb 6.
10
Mild cognitive impairment (MCI): a historical perspective.
Int Psychogeriatr. 2008 Feb;20(1):18-31. doi: 10.1017/S1041610207006394. Epub 2007 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验