Suppr超能文献

基于神经影像学生物标志物的阿尔茨海默病的迁移学习:系统综述。

Transfer Learning for Alzheimer's Disease through Neuroimaging Biomarkers: A Systematic Review.

机构信息

Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain.

Polytechnic of Coimbra, ESTGOH, Rua General Santos Costa, 3400-124 Oliveira do Hospital, Portugal.

出版信息

Sensors (Basel). 2021 Oct 31;21(21):7259. doi: 10.3390/s21217259.

Abstract

Alzheimer's disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.

摘要

阿尔茨海默病(AD)是 21 世纪医疗保健的重大挑战。自 2017 年以来,基于迁移学习的深度学习模型已在使用神经影像学生物标志物进行 AD 检测和进展预测方面得到认可。本文对使用基于迁移学习的深度学习模型和神经影像学生物标志物进行早期 AD 检测的最新进展进行了系统综述。使用了五个数据库,在筛选前报告了 2010 年至 2020 年期间发表的 215 项研究结果。经过筛选,有 13 项研究符合纳入标准。我们注意到,迄今为止,通过使用 3D 卷积网络和局部迁移学习相结合,AD 分类的最高准确率达到 98.20%,通过使用基于预训练的 3D 卷积网络的架构,AD 的预后预测的最高准确率达到 87.78%。结果表明,迁移学习有助于研究人员开发更准确的 AD 早期诊断系统。然而,未来的研究需要考虑一些要点,例如提高 AD 预后预测的准确性,探索额外的生物标志物,如 tau-PET 和淀粉样蛋白-PET,以了解高度区分特征表示,以分离相似的大脑模式,以及管理由于数据可用性有限而导致的数据集大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6996/8587338/cf163ac01c8e/sensors-21-07259-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验