Zhu Yingying, Kim Minjeong, Zhu Xiaofeng, Yan Jin, Kaufer Daniel, Wu Guorong
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Cancer Biology, Duke University, Durham, NC 27705, USA.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:205-213. doi: 10.1007/978-3-319-66179-7_24. Epub 2017 Sep 4.
Current learning-based methods for the diagnosis of Alzheimer's Disease (AD) rely on training a general classifier aiming to recognize abnormal structural alternations from homogenously distributed dataset deriving from a large population. However, due to diverse disease pathology, the real imaging data in routine clinic practices is highly complex and heterogeneous. Hence, prototype methods commonly performing well in the laboratory cannot achieve expected outcome when applied under the real clinic setting. To address this issue, herein we propose a novel personalized model for AD diagnosis. We customize a subject-specific AD classifier for the new testing data by iteratively reweighting the training data to reveal the latent testing data distribution and refining the classifier based on the weighted training data. Furthermore, to improve estimation of diagnosis result and clinical scores at the individual level, we extend our personalized AD diagnosis model to a joint classification and regression scenario. Our model shows improved performance on classification and regression accuracy when applied on Magnetic Resonance Imaging (MRI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our work pin-points the clinical potential of personalized diagnosis framework in AD.
当前基于学习的阿尔茨海默病(AD)诊断方法依赖于训练一个通用分类器,旨在从大量人群的均匀分布数据集中识别异常结构变化。然而,由于疾病病理的多样性,常规临床实践中的真实影像数据高度复杂且异质性强。因此,在实验室中通常表现良好的原型方法在实际临床环境中应用时无法达到预期效果。为解决这一问题,我们在此提出一种用于AD诊断的新型个性化模型。我们通过对训练数据进行迭代加权以揭示潜在测试数据分布,并基于加权训练数据优化分类器,为新的测试数据定制特定于个体的AD分类器。此外,为了在个体水平上改进诊断结果和临床评分的估计,我们将个性化AD诊断模型扩展到联合分类和回归场景。当应用于从阿尔茨海默病神经影像倡议(ADNI)数据库中选择的磁共振成像(MRI)时,我们的模型在分类和回归准确性方面表现出更好的性能。我们的工作指出了个性化诊断框架在AD中的临床潜力。