CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201899, P. R. China.
Nanoscale. 2017 Feb 16;9(7):2569-2578. doi: 10.1039/c6nr08741h.
Perovskite films are a promising candidate for future highly efficient and low-cost solar cells. The long diffusion length of charge carriers in the perovskite film makes its architecture fabrication seem unnecessary, while the rapid crystallization process increases the difficulty in its architecture fabrication. Here we show the fabrication of perovskite architectures through a nucleation mediated interfacial precipitation method with the proper immiscible anti-solvent. Consecutively evolved architectures from tri-layer porous films to bilayer dense films are obtained. The interfacial precipitation provides the possibility of controlling the crystallization process of perovskite films, while the secondary nucleation is the origin of the porous architecture. The nucleation mediation can be a novel bottom-up approach to fabricate architectural perovskite films. The tri-layer architectural perovskite film exhibits excellent light absorption in the range of 500-800 nm and good photovoltaic performance with 8.2% enhancement in efficiency compared with the bilayer film for the corresponding solar cells.
钙钛矿薄膜是未来高效、低成本太阳能电池的理想候选材料。钙钛矿薄膜中载流子的长扩散长度使其结构制造似乎变得不必要,而快速的结晶过程增加了其结构制造的难度。在这里,我们通过成核介导的界面沉淀法,使用适当的不混溶反溶剂,展示了钙钛矿结构的制造。从三层多孔薄膜到双层致密薄膜,连续演化的结构都可以得到。界面沉淀为控制钙钛矿薄膜的结晶过程提供了可能,而二次成核则是多孔结构的起源。成核介导可以成为一种制造结构钙钛矿薄膜的新型自下而上的方法。三层结构的钙钛矿薄膜在 500-800nm 范围内具有优异的光吸收性能,并且对于相应的太阳能电池,与双层薄膜相比,效率提高了 8.2%,表现出良好的光伏性能。