Weiste Christoph, Pedrotti Lorenzo, Selvanayagam Jebasingh, Muralidhara Prathibha, Fröschel Christian, Novák Ondřej, Ljung Karin, Hanson Johannes, Dröge-Laser Wolfgang
Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Department of Molecular Plant Physiology, Utrecht University, Utrecht, Netherlands.
PLoS Genet. 2017 Feb 3;13(2):e1006607. doi: 10.1371/journal.pgen.1006607. eCollection 2017 Feb.
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.
植物必须严格控制其能量稳态,以确保在不断变化的环境条件下生存和健康生长。因此,迫切需要根据当前的能量可用性,动态调节耗能的应激适应和生长相关过程。进化保守的蔗糖非发酵1相关激酶1(SnRK1)和下游C/S1组碱性亮氨酸拉链(bZIP)转录因子(TFs)是植物低能量管理中特征明确的核心参与者。然而,在能量剥夺条件下对植物生长控制的机制性见解在很大程度上仍然难以捉摸。在这项工作中,我们揭示了低能量激活的S1组bZIP11相关TFs作为生长素介导的主根生长调节因子的新功能。这些bZIPs的转基因功能获得方法会干扰根尖分生组织的活性并导致根生长受抑制,而功能丧失植物的根生长对低能量条件表现出明显的不敏感性。基于随后的分子和生化分析,我们提出了一个机制模型,其中bZIP11相关TFs通过直接激活IAA3/SHY2转录来控制根分生组织。IAA3/SHY2是根生长的关键负调节因子,已被证明能有效抑制PIN形成(PIN)基因家族主要生长素转运促进因子的转录,从而将极性生长素运输限制在根尖,进而限制生长素驱动的主根生长。综上所述,我们的结果揭示了核心的低能量激活SnRK1-C/S1-bZIP信号模块作为将植物能量状态信息整合到根分生组织控制中的通道,从而平衡植物生长和细胞能量资源。