Evans Stephanie, Alden Kieran, Cucurull-Sanchez Lourdes, Larminie Christopher, Coles Mark C, Kullberg Marika C, Timmis Jon
York Computational Immunology Lab, University of York, York, United Kingdom.
Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom.
PLoS Comput Biol. 2017 Feb 3;13(2):e1005351. doi: 10.1371/journal.pcbi.1005351. eCollection 2017 Feb.
A calibrated computational model reflects behaviours that are expected or observed in a complex system, providing a baseline upon which sensitivity analysis techniques can be used to analyse pathways that may impact model responses. However, calibration of a model where a behaviour depends on an intervention introduced after a defined time point is difficult, as model responses may be dependent on the conditions at the time the intervention is applied. We present ASPASIA (Automated Simulation Parameter Alteration and SensItivity Analysis), a cross-platform, open-source Java toolkit that addresses a key deficiency in software tools for understanding the impact an intervention has on system behaviour for models specified in Systems Biology Markup Language (SBML). ASPASIA can generate and modify models using SBML solver output as an initial parameter set, allowing interventions to be applied once a steady state has been reached. Additionally, multiple SBML models can be generated where a subset of parameter values are perturbed using local and global sensitivity analysis techniques, revealing the model's sensitivity to the intervention. To illustrate the capabilities of ASPASIA, we demonstrate how this tool has generated novel hypotheses regarding the mechanisms by which Th17-cell plasticity may be controlled in vivo. By using ASPASIA in conjunction with an SBML model of Th17-cell polarisation, we predict that promotion of the Th1-associated transcription factor T-bet, rather than inhibition of the Th17-associated transcription factor RORγt, is sufficient to drive switching of Th17 cells towards an IFN-γ-producing phenotype. Our approach can be applied to all SBML-encoded models to predict the effect that intervention strategies have on system behaviour. ASPASIA, released under the Artistic License (2.0), can be downloaded from http://www.york.ac.uk/ycil/software.
一个经过校准的计算模型反映了复杂系统中预期或观察到的行为,提供了一个基线,在此基础上可以使用敏感性分析技术来分析可能影响模型响应的途径。然而,对于行为取决于在定义的时间点之后引入的干预的模型进行校准是困难的,因为模型响应可能取决于应用干预时的条件。我们提出了ASPASIA(自动模拟参数改变和敏感性分析),这是一个跨平台的开源Java工具包,它解决了软件工具在理解干预对用系统生物学标记语言(SBML)指定的模型的系统行为的影响方面的一个关键缺陷。ASPASIA可以使用SBML求解器输出作为初始参数集来生成和修改模型,允许在达到稳态后应用干预。此外,可以生成多个SBML模型,其中使用局部和全局敏感性分析技术对参数值的一个子集进行扰动,揭示模型对干预的敏感性。为了说明ASPASIA的功能,我们展示了该工具如何产生了关于体内Th17细胞可塑性可能被控制的机制的新假设。通过将ASPASIA与Th17细胞极化的SBML模型结合使用,我们预测促进Th1相关转录因子T-bet,而不是抑制Th17相关转录因子RORγt,足以驱动Th17细胞向产生IFN-γ的表型转变。我们的方法可以应用于所有SBML编码的模型,以预测干预策略对系统行为的影响。ASPASIA根据艺术许可(2.0)发布,可以从http://www.york.ac.uk/ycil/software下载。