Suppr超能文献

FIT:波动场条件下转录组动力学的统计建模工具。

FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions.

作者信息

Iwayama Koji, Aisaka Yuri, Kutsuna Natsumaro, Nagano Atsushi J

机构信息

Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan.

LPixel Inc, Hongo, Bunkyo-ku, Tokyo, Japan.

出版信息

Bioinformatics. 2017 Jun 1;33(11):1672-1680. doi: 10.1093/bioinformatics/btx049.

Abstract

MOTIVATION

Considerable attention has been given to the quantification of environmental effects on organisms. In natural conditions, environmental factors are continuously changing in a complex manner. To reveal the effects of such environmental variations on organisms, transcriptome data in field environments have been collected and analyzed. Nagano et al. proposed a model that describes the relationship between transcriptomic variation and environmental conditions and demonstrated the capability to predict transcriptome variation in rice plants. However, the computational cost of parameter optimization has prevented its wide application.

RESULTS

: We propose a new statistical model and efficient parameter optimization based on the previous study. We developed and released FIT, an R package that offers functions for parameter optimization and transcriptome prediction. The proposed method achieves comparable or better prediction performance within a shorter computational time than the previous method. The package will facilitate the study of the environmental effects on transcriptomic variation in field conditions.

AVAILABILITY AND IMPLEMENTATION

Freely available from CRAN ( https://cran.r-project.org/web/packages/FIT/ ).

CONTACT

: anagano@agr.ryukoku.ac.jp.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

环境对生物体的影响量化已受到广泛关注。在自然条件下,环境因素以复杂的方式不断变化。为揭示这种环境变化对生物体的影响,已收集并分析了田间环境中的转录组数据。长野等人提出了一个描述转录组变异与环境条件之间关系的模型,并展示了预测水稻植株转录组变异的能力。然而,参数优化的计算成本阻碍了其广泛应用。

结果

我们基于先前的研究提出了一种新的统计模型和高效的参数优化方法。我们开发并发布了FIT,一个R包,它提供了参数优化和转录组预测的功能。所提出的方法在比先前方法更短的计算时间内实现了相当或更好的预测性能。该包将有助于研究田间条件下环境对转录组变异的影响。

可用性和实现方式

可从CRAN(https://cran.r-project.org/web/packages/FIT/ )免费获取。

联系方式

anagano@agr.ryukoku.ac.jp

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1912/5447243/3eee418b37cc/btx049f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验